{"title":"来自数据库的知识发现:MRI放射学特征评估高级别脑膜瘤复发风险。","authors":"Chen Chen, Lifang Hao, Bin Bai, Guijun Zhang","doi":"10.1186/s12880-024-01483-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).</p><p><strong>Methods: </strong>279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%). Combinations of data preprocessing methods, including normalization (Min-Max, Z-score, Mean), dimensionality reduction (Pearson Correlation Coefficients (PCC)), feature selector (max-Number, cluster) and ten-fold cross-validation were analyzed for their prediction performance. Kaplan-Meier curve, Cox proportional hazards regression model were used and concordance index (C-index), integrated Brier score (IBS) were selected. Model performance was assessed using the C-index.</p><p><strong>Results: </strong>WHO grade, age, gender, histogram (Mean, Perc.90%, Perc.99%), Gray-level co-occurrence matrix (S(3, -3)DifVarnc, S(5, 5)Correlat, S(1, 0)SumEntrp, S(2, -2)InvDfMom), Teta1, WavEnLL_s-2 and GrVariance were identified as the significant recurrence factors. The pipeline using Mean_PCC_Cluster_10 of T1C yielded the highest efficiency with an IBS of 0.170, 0.188, 0.208 and C-index of 0.709, 0.705, 0.602 in the train, test and validation sets, respectively. The pipeline using MinMax_PCC_Cluster_19 of T2WI yielded the highest efficiency with an IBS of 0.189, 0.175, 0.185 and C-index of 0.783, 0.66, 0.649 in the train, test and validation sets. The pipeline using MinMax_PCC_Cluster_13 of T2WI + T1C yielded the highest efficiency with an IBS of 0.152, 0.164, 0.191 and C-index of 0.701, 0.656, 0.593 in the train, test and validation sets, respectively.</p><p><strong>Conclusion: </strong>Knowledge discovery from MRI radiomic features can slightly help predict recurrence risk in HGMs. T2WI or T1C yielded better efficiency than T2WI + T1C. The parameters with the best power were Mean, Perc.99%, WavEnLL_s-2, Teta1 and GrVariance.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"14"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716254/pdf/","citationCount":"0","resultStr":"{\"title\":\"Knowledge discovery from database: MRI radiomic features to assess recurrence risk in high-grade meningiomas.\",\"authors\":\"Chen Chen, Lifang Hao, Bin Bai, Guijun Zhang\",\"doi\":\"10.1186/s12880-024-01483-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).</p><p><strong>Methods: </strong>279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%). Combinations of data preprocessing methods, including normalization (Min-Max, Z-score, Mean), dimensionality reduction (Pearson Correlation Coefficients (PCC)), feature selector (max-Number, cluster) and ten-fold cross-validation were analyzed for their prediction performance. Kaplan-Meier curve, Cox proportional hazards regression model were used and concordance index (C-index), integrated Brier score (IBS) were selected. Model performance was assessed using the C-index.</p><p><strong>Results: </strong>WHO grade, age, gender, histogram (Mean, Perc.90%, Perc.99%), Gray-level co-occurrence matrix (S(3, -3)DifVarnc, S(5, 5)Correlat, S(1, 0)SumEntrp, S(2, -2)InvDfMom), Teta1, WavEnLL_s-2 and GrVariance were identified as the significant recurrence factors. The pipeline using Mean_PCC_Cluster_10 of T1C yielded the highest efficiency with an IBS of 0.170, 0.188, 0.208 and C-index of 0.709, 0.705, 0.602 in the train, test and validation sets, respectively. The pipeline using MinMax_PCC_Cluster_19 of T2WI yielded the highest efficiency with an IBS of 0.189, 0.175, 0.185 and C-index of 0.783, 0.66, 0.649 in the train, test and validation sets. The pipeline using MinMax_PCC_Cluster_13 of T2WI + T1C yielded the highest efficiency with an IBS of 0.152, 0.164, 0.191 and C-index of 0.701, 0.656, 0.593 in the train, test and validation sets, respectively.</p><p><strong>Conclusion: </strong>Knowledge discovery from MRI radiomic features can slightly help predict recurrence risk in HGMs. T2WI or T1C yielded better efficiency than T2WI + T1C. The parameters with the best power were Mean, Perc.99%, WavEnLL_s-2, Teta1 and GrVariance.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"14\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716254/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01483-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01483-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Knowledge discovery from database: MRI radiomic features to assess recurrence risk in high-grade meningiomas.
Purpose: We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).
Methods: 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%). Combinations of data preprocessing methods, including normalization (Min-Max, Z-score, Mean), dimensionality reduction (Pearson Correlation Coefficients (PCC)), feature selector (max-Number, cluster) and ten-fold cross-validation were analyzed for their prediction performance. Kaplan-Meier curve, Cox proportional hazards regression model were used and concordance index (C-index), integrated Brier score (IBS) were selected. Model performance was assessed using the C-index.
Results: WHO grade, age, gender, histogram (Mean, Perc.90%, Perc.99%), Gray-level co-occurrence matrix (S(3, -3)DifVarnc, S(5, 5)Correlat, S(1, 0)SumEntrp, S(2, -2)InvDfMom), Teta1, WavEnLL_s-2 and GrVariance were identified as the significant recurrence factors. The pipeline using Mean_PCC_Cluster_10 of T1C yielded the highest efficiency with an IBS of 0.170, 0.188, 0.208 and C-index of 0.709, 0.705, 0.602 in the train, test and validation sets, respectively. The pipeline using MinMax_PCC_Cluster_19 of T2WI yielded the highest efficiency with an IBS of 0.189, 0.175, 0.185 and C-index of 0.783, 0.66, 0.649 in the train, test and validation sets. The pipeline using MinMax_PCC_Cluster_13 of T2WI + T1C yielded the highest efficiency with an IBS of 0.152, 0.164, 0.191 and C-index of 0.701, 0.656, 0.593 in the train, test and validation sets, respectively.
Conclusion: Knowledge discovery from MRI radiomic features can slightly help predict recurrence risk in HGMs. T2WI or T1C yielded better efficiency than T2WI + T1C. The parameters with the best power were Mean, Perc.99%, WavEnLL_s-2, Teta1 and GrVariance.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.