FAM49B通过NEK9磷酸化稳定c-Myc,从而驱动结直肠癌的进展。

IF 5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
BioFactors Pub Date : 2025-01-08 DOI:10.1002/biof.2158
Chen Lu, Tianyu Liu, E. Yimin, Lin Miao, Chunzhao Yu, Jianping Zhang, Xiagang Luo
{"title":"FAM49B通过NEK9磷酸化稳定c-Myc,从而驱动结直肠癌的进展。","authors":"Chen Lu,&nbsp;Tianyu Liu,&nbsp;E. Yimin,&nbsp;Lin Miao,&nbsp;Chunzhao Yu,&nbsp;Jianping Zhang,&nbsp;Xiagang Luo","doi":"10.1002/biof.2158","DOIUrl":null,"url":null,"abstract":"<p>Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored. In this study, we observed that FAM49B was abnormally expressed in CRC tissues and cell lines, with elevated expression correlating with poor patient prognosis. FAM49B knockdown markedly suppressed CRC cell proliferation by arresting the cell cycle and reducing cell migration and invasion. Single-cell RNA-seq (ScRNA-seq) analysis revealed that high FAM49B expression in malignant epithelial cell clusters was strongly linked to c-Myc oncogene activation. Further, FAM49B knockdown significantly reduced c-Myc expression by enhancing its K48 ubiquitination. We identified NEK9 as a direct interacting partner of FAM49B, with FAM49B knockdown inhibiting NEK9-Thr210 phosphorylation. Similarly, high NEK9 expression was linked to unfavorable prognosis in CRC. In FAM49B-overexpressing CRC cells, NEK9 knockdown significantly suppressed c-Myc expression, c-Myc-ser62 phosphorylation, and reduced cell proliferation, migration, and invasion. Thus, directly targeting the FAM49B/NEK9/c-Myc pathway presents a promising therapeutic approach for c-Myc positive CRC patients.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAM49B drives colorectal cancer progression by stabilizing c-Myc through NEK9 phosphorylation\",\"authors\":\"Chen Lu,&nbsp;Tianyu Liu,&nbsp;E. Yimin,&nbsp;Lin Miao,&nbsp;Chunzhao Yu,&nbsp;Jianping Zhang,&nbsp;Xiagang Luo\",\"doi\":\"10.1002/biof.2158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored. In this study, we observed that FAM49B was abnormally expressed in CRC tissues and cell lines, with elevated expression correlating with poor patient prognosis. FAM49B knockdown markedly suppressed CRC cell proliferation by arresting the cell cycle and reducing cell migration and invasion. Single-cell RNA-seq (ScRNA-seq) analysis revealed that high FAM49B expression in malignant epithelial cell clusters was strongly linked to c-Myc oncogene activation. Further, FAM49B knockdown significantly reduced c-Myc expression by enhancing its K48 ubiquitination. We identified NEK9 as a direct interacting partner of FAM49B, with FAM49B knockdown inhibiting NEK9-Thr210 phosphorylation. Similarly, high NEK9 expression was linked to unfavorable prognosis in CRC. In FAM49B-overexpressing CRC cells, NEK9 knockdown significantly suppressed c-Myc expression, c-Myc-ser62 phosphorylation, and reduced cell proliferation, migration, and invasion. Thus, directly targeting the FAM49B/NEK9/c-Myc pathway presents a promising therapeutic approach for c-Myc positive CRC patients.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biof.2158\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2158","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)是全球第三大流行癌症,也是癌症死亡的第二大原因。FAM49B是FAM49基因家族的成员,是最近发现的进化保守基因。新出现的研究表明FAM49B在多种癌症中发挥作用,尽管其在CRC中的具体机制仍未被探索。本研究中,我们发现FAM49B在结直肠癌组织和细胞系中表达异常,表达升高与患者预后不良相关。FAM49B敲低可通过阻滞细胞周期、减少细胞迁移和侵袭,显著抑制结直肠癌细胞增殖。单细胞RNA-seq (ScRNA-seq)分析显示,FAM49B在恶性上皮细胞簇中的高表达与c-Myc癌基因激活密切相关。此外,FAM49B敲低通过增强其K48泛素化显著降低c-Myc的表达。我们发现NEK9是FAM49B的直接相互作用伙伴,FAM49B的敲低抑制NEK9- thr210的磷酸化。同样,高NEK9表达与结直肠癌的不良预后有关。在fam49b过表达的结直肠癌细胞中,NEK9敲低可显著抑制c-Myc表达和c-Myc-ser62磷酸化,减少细胞增殖、迁移和侵袭。因此,直接靶向FAM49B/NEK9/c-Myc通路为c-Myc阳性CRC患者提供了一种有希望的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FAM49B drives colorectal cancer progression by stabilizing c-Myc through NEK9 phosphorylation

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored. In this study, we observed that FAM49B was abnormally expressed in CRC tissues and cell lines, with elevated expression correlating with poor patient prognosis. FAM49B knockdown markedly suppressed CRC cell proliferation by arresting the cell cycle and reducing cell migration and invasion. Single-cell RNA-seq (ScRNA-seq) analysis revealed that high FAM49B expression in malignant epithelial cell clusters was strongly linked to c-Myc oncogene activation. Further, FAM49B knockdown significantly reduced c-Myc expression by enhancing its K48 ubiquitination. We identified NEK9 as a direct interacting partner of FAM49B, with FAM49B knockdown inhibiting NEK9-Thr210 phosphorylation. Similarly, high NEK9 expression was linked to unfavorable prognosis in CRC. In FAM49B-overexpressing CRC cells, NEK9 knockdown significantly suppressed c-Myc expression, c-Myc-ser62 phosphorylation, and reduced cell proliferation, migration, and invasion. Thus, directly targeting the FAM49B/NEK9/c-Myc pathway presents a promising therapeutic approach for c-Myc positive CRC patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioFactors
BioFactors 生物-内分泌学与代谢
CiteScore
11.50
自引率
3.30%
发文量
96
审稿时长
6-12 weeks
期刊介绍: BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease. The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements. In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信