Adam Shih-Yuan Lee , Ta-Hsien Lin , Yen-Yu Liu , Yun-Hsin Wang , Shu-Chun Cheng , Tao-Sheng Li , Chiao-Yin Sun , Yau-Hung Chen
{"title":"顺式-3,4-二芳基-α-亚甲基-γ-丁内酰胺在培养的人肾癌细胞和斑马鱼胚胎中的生长抑制和毒性评价。","authors":"Adam Shih-Yuan Lee , Ta-Hsien Lin , Yen-Yu Liu , Yun-Hsin Wang , Shu-Chun Cheng , Tao-Sheng Li , Chiao-Yin Sun , Yau-Hung Chen","doi":"10.1016/j.bbagen.2025.130761","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, <em>cis</em>-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1–8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(<em>wt1b</em>:<em>egfp</em>) were used to assess the toxicities of compounds 5, 6, and 8. The findings suggested that compound 8 was relatively non-toxic compared to the others. Western blot analysis indicated that compounds 5, 6, and 8 may interact with the P53/mTOR pathways. Based on these results, we concluded that compound 8 exhibits RCC growth inhibition properties and has lower toxicity, making it a candidate for further investigation in mammalian models.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 3","pages":"Article 130761"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth inhibition and toxicity assessments of cis-3,4-diaryl-α-methylene-γ-butyrolactams in cultured human renal cancer cells and zebrafish embryos\",\"authors\":\"Adam Shih-Yuan Lee , Ta-Hsien Lin , Yen-Yu Liu , Yun-Hsin Wang , Shu-Chun Cheng , Tao-Sheng Li , Chiao-Yin Sun , Yau-Hung Chen\",\"doi\":\"10.1016/j.bbagen.2025.130761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, <em>cis</em>-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1–8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(<em>wt1b</em>:<em>egfp</em>) were used to assess the toxicities of compounds 5, 6, and 8. The findings suggested that compound 8 was relatively non-toxic compared to the others. Western blot analysis indicated that compounds 5, 6, and 8 may interact with the P53/mTOR pathways. Based on these results, we concluded that compound 8 exhibits RCC growth inhibition properties and has lower toxicity, making it a candidate for further investigation in mammalian models.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 3\",\"pages\":\"Article 130761\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416525000066\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000066","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Growth inhibition and toxicity assessments of cis-3,4-diaryl-α-methylene-γ-butyrolactams in cultured human renal cancer cells and zebrafish embryos
This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1–8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8. The findings suggested that compound 8 was relatively non-toxic compared to the others. Western blot analysis indicated that compounds 5, 6, and 8 may interact with the P53/mTOR pathways. Based on these results, we concluded that compound 8 exhibits RCC growth inhibition properties and has lower toxicity, making it a candidate for further investigation in mammalian models.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.