{"title":"架构感知增强:用于增强帕金森病检测的混合深度学习和机器学习方法。","authors":"Madjda Khedimi, Tao Zhang, Hanine Merzougui, Xin Zhao, Yanzhang Geng, Khamsa Djaroudib, Pascal Lorenz","doi":"10.3390/bioengineering11121218","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's Disease (PD) is a progressive neurodegenerative disorder affecting millions worldwide. Early detection is crucial for improving patient outcomes. Spiral drawing analysis has emerged as a non-invasive tool to detect early motor impairments associated with PD. This study examines the performance of hybrid deep learning and machine learning models in detecting PD using spiral drawings, with a focus on the impact of data augmentation techniques. We compare the accuracy of Vision Transformer (ViT) with K-Nearest Neighbors (KNN), Convolutional Neural Networks (CNN) with Support Vector Machines (SVM), and Residual Neural Networks (ResNet-50) with Logistic Regression, evaluating their performance on both augmented and non-augmented data. Our findings reveal that ViT with KNN, initially achieving 96.77% accuracy on unaugmented data, experienced a notable decline across all augmentation techniques, suggesting it relies heavily on global patterns in spiral drawings. In contrast, ResNet-50 with Logistic Regression showed consistent improvement with data augmentation, reaching 93.55% accuracy when rotation and flipping techniques were applied. These results highlight that hybrid models respond differently to augmentation, and careful selection of augmentation strategies is necessary for optimizing model performance. Our study provides important insights into the development of reliable diagnostic tools for early PD detection, emphasizing the need for appropriate augmentation techniques in medical image analysis.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Architecture-Aware Augmentation: A Hybrid Deep Learning and Machine Learning Approach for Enhanced Parkinson's Disease Detection.\",\"authors\":\"Madjda Khedimi, Tao Zhang, Hanine Merzougui, Xin Zhao, Yanzhang Geng, Khamsa Djaroudib, Pascal Lorenz\",\"doi\":\"10.3390/bioengineering11121218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's Disease (PD) is a progressive neurodegenerative disorder affecting millions worldwide. Early detection is crucial for improving patient outcomes. Spiral drawing analysis has emerged as a non-invasive tool to detect early motor impairments associated with PD. This study examines the performance of hybrid deep learning and machine learning models in detecting PD using spiral drawings, with a focus on the impact of data augmentation techniques. We compare the accuracy of Vision Transformer (ViT) with K-Nearest Neighbors (KNN), Convolutional Neural Networks (CNN) with Support Vector Machines (SVM), and Residual Neural Networks (ResNet-50) with Logistic Regression, evaluating their performance on both augmented and non-augmented data. Our findings reveal that ViT with KNN, initially achieving 96.77% accuracy on unaugmented data, experienced a notable decline across all augmentation techniques, suggesting it relies heavily on global patterns in spiral drawings. In contrast, ResNet-50 with Logistic Regression showed consistent improvement with data augmentation, reaching 93.55% accuracy when rotation and flipping techniques were applied. These results highlight that hybrid models respond differently to augmentation, and careful selection of augmentation strategies is necessary for optimizing model performance. Our study provides important insights into the development of reliable diagnostic tools for early PD detection, emphasizing the need for appropriate augmentation techniques in medical image analysis.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121218\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Architecture-Aware Augmentation: A Hybrid Deep Learning and Machine Learning Approach for Enhanced Parkinson's Disease Detection.
Parkinson's Disease (PD) is a progressive neurodegenerative disorder affecting millions worldwide. Early detection is crucial for improving patient outcomes. Spiral drawing analysis has emerged as a non-invasive tool to detect early motor impairments associated with PD. This study examines the performance of hybrid deep learning and machine learning models in detecting PD using spiral drawings, with a focus on the impact of data augmentation techniques. We compare the accuracy of Vision Transformer (ViT) with K-Nearest Neighbors (KNN), Convolutional Neural Networks (CNN) with Support Vector Machines (SVM), and Residual Neural Networks (ResNet-50) with Logistic Regression, evaluating their performance on both augmented and non-augmented data. Our findings reveal that ViT with KNN, initially achieving 96.77% accuracy on unaugmented data, experienced a notable decline across all augmentation techniques, suggesting it relies heavily on global patterns in spiral drawings. In contrast, ResNet-50 with Logistic Regression showed consistent improvement with data augmentation, reaching 93.55% accuracy when rotation and flipping techniques were applied. These results highlight that hybrid models respond differently to augmentation, and careful selection of augmentation strategies is necessary for optimizing model performance. Our study provides important insights into the development of reliable diagnostic tools for early PD detection, emphasizing the need for appropriate augmentation techniques in medical image analysis.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering