Amr Kaadan, Simona Salati, Stefania Setti, Roy Aaron
{"title":"脉冲电磁场增强骨缺损愈合——从机制到临床结果。","authors":"Amr Kaadan, Simona Salati, Stefania Setti, Roy Aaron","doi":"10.3390/bioengineering11121223","DOIUrl":null,"url":null,"abstract":"<p><p>Pulsed Electromagnetic Fields (PEMF) are widely used, with excellent clinical outcomes. However, their mechanism of action has not yet been completely understood. The purpose of this review is to describe current observations on the mechanisms of PEMF, together with its clinical efficacy. Osteoblast responsiveness to PEMF is described on several scales, from the cell membrane to clinically relevant bone formation. PEMF has been shown to activate membrane adenosine receptors. The role of adenosine receptors in activating intracellular second messenger pathways, such as the canonical Wnt/β-catenin pathway and the mitogen-activated protein kinases (MAPK) pathway, is described. The responsiveness of osteoblasts and the synthesis of structural and signaling proteins constitute the role of PEMFs in promoting osteogenesis and bone matrix synthesis, and they are described. Multiple studies, ranging from observational and randomized to meta-analyses that investigate the clinical efficacy of PEMF, are described. This review presents a favorable conclusion on the clinical effects of PEMF while unlocking the \"black box\" of PEMF's mechanism of action, thus improving confidence in the clinical utility of PEMF in bone repair.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672986/pdf/","citationCount":"0","resultStr":"{\"title\":\"Augmentation of Deficient Bone Healing by Pulsed Electromagnetic Fields-From Mechanisms to Clinical Outcomes.\",\"authors\":\"Amr Kaadan, Simona Salati, Stefania Setti, Roy Aaron\",\"doi\":\"10.3390/bioengineering11121223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulsed Electromagnetic Fields (PEMF) are widely used, with excellent clinical outcomes. However, their mechanism of action has not yet been completely understood. The purpose of this review is to describe current observations on the mechanisms of PEMF, together with its clinical efficacy. Osteoblast responsiveness to PEMF is described on several scales, from the cell membrane to clinically relevant bone formation. PEMF has been shown to activate membrane adenosine receptors. The role of adenosine receptors in activating intracellular second messenger pathways, such as the canonical Wnt/β-catenin pathway and the mitogen-activated protein kinases (MAPK) pathway, is described. The responsiveness of osteoblasts and the synthesis of structural and signaling proteins constitute the role of PEMFs in promoting osteogenesis and bone matrix synthesis, and they are described. Multiple studies, ranging from observational and randomized to meta-analyses that investigate the clinical efficacy of PEMF, are described. This review presents a favorable conclusion on the clinical effects of PEMF while unlocking the \\\"black box\\\" of PEMF's mechanism of action, thus improving confidence in the clinical utility of PEMF in bone repair.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121223\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121223","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Augmentation of Deficient Bone Healing by Pulsed Electromagnetic Fields-From Mechanisms to Clinical Outcomes.
Pulsed Electromagnetic Fields (PEMF) are widely used, with excellent clinical outcomes. However, their mechanism of action has not yet been completely understood. The purpose of this review is to describe current observations on the mechanisms of PEMF, together with its clinical efficacy. Osteoblast responsiveness to PEMF is described on several scales, from the cell membrane to clinically relevant bone formation. PEMF has been shown to activate membrane adenosine receptors. The role of adenosine receptors in activating intracellular second messenger pathways, such as the canonical Wnt/β-catenin pathway and the mitogen-activated protein kinases (MAPK) pathway, is described. The responsiveness of osteoblasts and the synthesis of structural and signaling proteins constitute the role of PEMFs in promoting osteogenesis and bone matrix synthesis, and they are described. Multiple studies, ranging from observational and randomized to meta-analyses that investigate the clinical efficacy of PEMF, are described. This review presents a favorable conclusion on the clinical effects of PEMF while unlocking the "black box" of PEMF's mechanism of action, thus improving confidence in the clinical utility of PEMF in bone repair.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering