Samuel B Snider, Bradley J Molyneaux, Anarghya Murthy, Quinn Rademaker, Hafeez Rajwani, Benjamin M Scirica, Jong Woo Lee, Christopher W Connor
{"title":"开发一种基于脑电图的模型,利用BIS引擎的部分处理来预测心脏骤停后的苏醒。","authors":"Samuel B Snider, Bradley J Molyneaux, Anarghya Murthy, Quinn Rademaker, Hafeez Rajwani, Benjamin M Scirica, Jong Woo Lee, Christopher W Connor","doi":"10.1097/ALN.0000000000005369","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate prognostication in comatose survivors of cardiac arrest is a challenging and high-stakes endeavor. The authors sought to determine whether internal electroencephalogram (EEG) subparameters extracted by the BIS monitor (Medtronic, USA), a device commonly used to estimate depth of anesthesia intraoperatively, could be repurposed to predict recovery of consciousness after cardiac arrest.</p><p><strong>Methods: </strong>In this retrospective cohort study, a three-layer neural network was trained to predict recovery of consciousness to the point of command following versus not based on 48 h of continuous EEG recordings in 315 comatose patients admitted to a single U.S. academic medical center after cardiac arrest (derivation cohort, n = 181; validation cohort, n = 134). Continuous EEGs were partially processed into subparameters using virtualized emulation of the BIS Engine ( i.e. , the internal software of the BIS monitor) applied to signals from the frontotemporal leads of the standard 10-20 EEG montage. The model was trained on hourly averaged measurements of these internal subparameters. This model's performance was compared to the modified Westhall qualitative EEG scoring framework.</p><p><strong>Results: </strong>Maximum prognostic accuracy in the derivation cohort was achieved using a network trained on only four BIS subparameters (inverse burst suppression ratio, mean spectral power density, gamma power, and theta/delta power). In a held-out sample of 134 patients, the model outperformed current state-of-the-art qualitative EEG assessment techniques at predicting recovery of consciousness (area under the receiver operating characteristics curve, 0.86; accuracy, 0.87; sensitivity, 0.83; specificity, 0.88; positive predictive value, 0.71; negative predictive value, 0.94). Gamma band power has not been previously reported as a correlate of recovery potential after cardiac arrest.</p><p><strong>Conclusions: </strong>In patients comatose after cardiac arrest, four EEG features calculated internally by the BIS Engine were repurposed by a compact neural network to achieve a prognostic accuracy superior to the current clinical qualitative accepted standard, with high sensitivity for recovery. These features hold promise for assessing patients after cardiac arrest.</p>","PeriodicalId":7970,"journal":{"name":"Anesthesiology","volume":" ","pages":"806-817"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing an Electroencephalogram-based Model to Predict Awakening after Cardiac Arrest Using Partial Processing with the BIS Engine.\",\"authors\":\"Samuel B Snider, Bradley J Molyneaux, Anarghya Murthy, Quinn Rademaker, Hafeez Rajwani, Benjamin M Scirica, Jong Woo Lee, Christopher W Connor\",\"doi\":\"10.1097/ALN.0000000000005369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate prognostication in comatose survivors of cardiac arrest is a challenging and high-stakes endeavor. The authors sought to determine whether internal electroencephalogram (EEG) subparameters extracted by the BIS monitor (Medtronic, USA), a device commonly used to estimate depth of anesthesia intraoperatively, could be repurposed to predict recovery of consciousness after cardiac arrest.</p><p><strong>Methods: </strong>In this retrospective cohort study, a three-layer neural network was trained to predict recovery of consciousness to the point of command following versus not based on 48 h of continuous EEG recordings in 315 comatose patients admitted to a single U.S. academic medical center after cardiac arrest (derivation cohort, n = 181; validation cohort, n = 134). Continuous EEGs were partially processed into subparameters using virtualized emulation of the BIS Engine ( i.e. , the internal software of the BIS monitor) applied to signals from the frontotemporal leads of the standard 10-20 EEG montage. The model was trained on hourly averaged measurements of these internal subparameters. This model's performance was compared to the modified Westhall qualitative EEG scoring framework.</p><p><strong>Results: </strong>Maximum prognostic accuracy in the derivation cohort was achieved using a network trained on only four BIS subparameters (inverse burst suppression ratio, mean spectral power density, gamma power, and theta/delta power). In a held-out sample of 134 patients, the model outperformed current state-of-the-art qualitative EEG assessment techniques at predicting recovery of consciousness (area under the receiver operating characteristics curve, 0.86; accuracy, 0.87; sensitivity, 0.83; specificity, 0.88; positive predictive value, 0.71; negative predictive value, 0.94). Gamma band power has not been previously reported as a correlate of recovery potential after cardiac arrest.</p><p><strong>Conclusions: </strong>In patients comatose after cardiac arrest, four EEG features calculated internally by the BIS Engine were repurposed by a compact neural network to achieve a prognostic accuracy superior to the current clinical qualitative accepted standard, with high sensitivity for recovery. These features hold promise for assessing patients after cardiac arrest.</p>\",\"PeriodicalId\":7970,\"journal\":{\"name\":\"Anesthesiology\",\"volume\":\" \",\"pages\":\"806-817\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anesthesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/ALN.0000000000005369\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ALN.0000000000005369","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Developing an Electroencephalogram-based Model to Predict Awakening after Cardiac Arrest Using Partial Processing with the BIS Engine.
Background: Accurate prognostication in comatose survivors of cardiac arrest is a challenging and high-stakes endeavor. The authors sought to determine whether internal electroencephalogram (EEG) subparameters extracted by the BIS monitor (Medtronic, USA), a device commonly used to estimate depth of anesthesia intraoperatively, could be repurposed to predict recovery of consciousness after cardiac arrest.
Methods: In this retrospective cohort study, a three-layer neural network was trained to predict recovery of consciousness to the point of command following versus not based on 48 h of continuous EEG recordings in 315 comatose patients admitted to a single U.S. academic medical center after cardiac arrest (derivation cohort, n = 181; validation cohort, n = 134). Continuous EEGs were partially processed into subparameters using virtualized emulation of the BIS Engine ( i.e. , the internal software of the BIS monitor) applied to signals from the frontotemporal leads of the standard 10-20 EEG montage. The model was trained on hourly averaged measurements of these internal subparameters. This model's performance was compared to the modified Westhall qualitative EEG scoring framework.
Results: Maximum prognostic accuracy in the derivation cohort was achieved using a network trained on only four BIS subparameters (inverse burst suppression ratio, mean spectral power density, gamma power, and theta/delta power). In a held-out sample of 134 patients, the model outperformed current state-of-the-art qualitative EEG assessment techniques at predicting recovery of consciousness (area under the receiver operating characteristics curve, 0.86; accuracy, 0.87; sensitivity, 0.83; specificity, 0.88; positive predictive value, 0.71; negative predictive value, 0.94). Gamma band power has not been previously reported as a correlate of recovery potential after cardiac arrest.
Conclusions: In patients comatose after cardiac arrest, four EEG features calculated internally by the BIS Engine were repurposed by a compact neural network to achieve a prognostic accuracy superior to the current clinical qualitative accepted standard, with high sensitivity for recovery. These features hold promise for assessing patients after cardiac arrest.
期刊介绍:
With its establishment in 1940, Anesthesiology has emerged as a prominent leader in the field of anesthesiology, encompassing perioperative, critical care, and pain medicine. As the esteemed journal of the American Society of Anesthesiologists, Anesthesiology operates independently with full editorial freedom. Its distinguished Editorial Board, comprising renowned professionals from across the globe, drives the advancement of the specialty by presenting innovative research through immediate open access to select articles and granting free access to all published articles after a six-month period. Furthermore, Anesthesiology actively promotes groundbreaking studies through an influential press release program. The journal's unwavering commitment lies in the dissemination of exemplary work that enhances clinical practice and revolutionizes the practice of medicine within our discipline.