Dang Khoa Nguyen, Min-Jung Kang, Su-Jeong Oh, Hee-Jeong Park, Seong Hui Kim, Jeong Hyun Yu, Yunji Lee, Hyeon Seo Lee, Ji Won Yang, Yoojin Seo, Ji-Su Ahn, Hyung-Sik Kim
{"title":"细小单胞菌微极化的m2样肿瘤相关巨噬细胞通过IL-8分泌加速结直肠癌的发展。","authors":"Dang Khoa Nguyen, Min-Jung Kang, Su-Jeong Oh, Hee-Jeong Park, Seong Hui Kim, Jeong Hyun Yu, Yunji Lee, Hyeon Seo Lee, Ji Won Yang, Yoojin Seo, Ji-Su Ahn, Hyung-Sik Kim","doi":"10.1080/19768354.2024.2442401","DOIUrl":null,"url":null,"abstract":"<p><p><i>Parvimonas micra</i> (<i>Pm</i>), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system. However, the mechanisms by which <i>Pm</i> affects the progression of CRC remain inadequately elucidated. In this study, we explored the impact of <i>Pm</i> infection on CRC cell characteristics, including proliferation, chemoresistance, migration, and macrophage polarization. We found that <i>Pm</i>-infected THP-1-derived macrophages exhibited elevated interleukin-10 levels, a well-established M2 marker. Conditioned media from <i>Pm</i>-treated THP-1 cells significantly enhanced CRC cell proliferation, cisplatin resistance, and migration, and interleukin-8 was identified as a key factor. Consistent with the in vitro results, an azoxymethane/dextran sodium sulfate mouse model treated with oral <i>Pm</i> showed accelerated CRC tumor growth. These results offer mechanistic insights into the influence of <i>Pm</i> infection on tumor microenvironment in CRC through M2-like macrophage polarization. The identified pathways may serve as potential targets for therapeutic interventions for CRC.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"24-34"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703389/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Parvimonas micra</i>-polarized M2-like tumor-associated macrophages accelerate colorectal cancer development via IL-8 secretion.\",\"authors\":\"Dang Khoa Nguyen, Min-Jung Kang, Su-Jeong Oh, Hee-Jeong Park, Seong Hui Kim, Jeong Hyun Yu, Yunji Lee, Hyeon Seo Lee, Ji Won Yang, Yoojin Seo, Ji-Su Ahn, Hyung-Sik Kim\",\"doi\":\"10.1080/19768354.2024.2442401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Parvimonas micra</i> (<i>Pm</i>), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system. However, the mechanisms by which <i>Pm</i> affects the progression of CRC remain inadequately elucidated. In this study, we explored the impact of <i>Pm</i> infection on CRC cell characteristics, including proliferation, chemoresistance, migration, and macrophage polarization. We found that <i>Pm</i>-infected THP-1-derived macrophages exhibited elevated interleukin-10 levels, a well-established M2 marker. Conditioned media from <i>Pm</i>-treated THP-1 cells significantly enhanced CRC cell proliferation, cisplatin resistance, and migration, and interleukin-8 was identified as a key factor. Consistent with the in vitro results, an azoxymethane/dextran sodium sulfate mouse model treated with oral <i>Pm</i> showed accelerated CRC tumor growth. These results offer mechanistic insights into the influence of <i>Pm</i> infection on tumor microenvironment in CRC through M2-like macrophage polarization. The identified pathways may serve as potential targets for therapeutic interventions for CRC.</p>\",\"PeriodicalId\":7804,\"journal\":{\"name\":\"Animal Cells and Systems\",\"volume\":\"29 1\",\"pages\":\"24-34\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cells and Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19768354.2024.2442401\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2024.2442401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Parvimonas micra-polarized M2-like tumor-associated macrophages accelerate colorectal cancer development via IL-8 secretion.
Parvimonas micra (Pm), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system. However, the mechanisms by which Pm affects the progression of CRC remain inadequately elucidated. In this study, we explored the impact of Pm infection on CRC cell characteristics, including proliferation, chemoresistance, migration, and macrophage polarization. We found that Pm-infected THP-1-derived macrophages exhibited elevated interleukin-10 levels, a well-established M2 marker. Conditioned media from Pm-treated THP-1 cells significantly enhanced CRC cell proliferation, cisplatin resistance, and migration, and interleukin-8 was identified as a key factor. Consistent with the in vitro results, an azoxymethane/dextran sodium sulfate mouse model treated with oral Pm showed accelerated CRC tumor growth. These results offer mechanistic insights into the influence of Pm infection on tumor microenvironment in CRC through M2-like macrophage polarization. The identified pathways may serve as potential targets for therapeutic interventions for CRC.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.