SLC27A3下调恢复Th17/Treg平衡,通过抑制JAK2/STAT3通路缓解COPD。

IF 2.5 4区 医学 Q3 ALLERGY
Xiaoping Li, Ji Liu, Zehui Jing, Shuxia Li
{"title":"SLC27A3下调恢复Th17/Treg平衡,通过抑制JAK2/STAT3通路缓解COPD。","authors":"Xiaoping Li, Ji Liu, Zehui Jing, Shuxia Li","doi":"10.15586/aei.v53i1.1215","DOIUrl":null,"url":null,"abstract":"<p><p>The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay. Western blotting was carried out to analyze the expression of SLC27A3. Naïve CD4+ T-cells were stimulated with anti-CD3, anti-CD28, transforming growth factor (TGF)-β, and/or interleukin (IL)-6, and their differentiation into Th17 or Treg cells was promoted, as assessed by flow cytometry. The pathway expression of JAK2/STAT3 was detected using Western blotting. Mice with COPD that had higher expression levels of SLC27A3 in their lung tissue display abnormalities in lung architecture and function, as well as an imbalance between Th17 and Tregs and an elevated inflammatory response. In COPD mice with SLC27A3 knockdown, the JAK2/STAT3 pathway was repressed, lung inflammation was decreased, Th17/Treg balance was improved, and lung functioning was improved. In conclusion, the findings of this study suggest that downregulating SLC27A3 has the potential to attenuate the inflammatory response, mitigate COPD progression, and rebalance the Th17/Treg ratio by inhibiting the JAK2/STAT3 signaling pathway. These results lay a foundation for utilizing SLC27A3 as a potential therapeutic target to modulate the JAK2/STAT3 pathway for the treatment of COPD, with the aim of enhancing lung function, reducing inflammation, and restoring Th17/Treg equilibrium in a clinical context.</p>","PeriodicalId":7536,"journal":{"name":"Allergologia et immunopathologia","volume":"53 1","pages":"91-98"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLC27A3 downregulation restores Th17/Treg balance and alleviates COPD via JAK2/STAT3 pathway inhibition.\",\"authors\":\"Xiaoping Li, Ji Liu, Zehui Jing, Shuxia Li\",\"doi\":\"10.15586/aei.v53i1.1215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay. Western blotting was carried out to analyze the expression of SLC27A3. Naïve CD4+ T-cells were stimulated with anti-CD3, anti-CD28, transforming growth factor (TGF)-β, and/or interleukin (IL)-6, and their differentiation into Th17 or Treg cells was promoted, as assessed by flow cytometry. The pathway expression of JAK2/STAT3 was detected using Western blotting. Mice with COPD that had higher expression levels of SLC27A3 in their lung tissue display abnormalities in lung architecture and function, as well as an imbalance between Th17 and Tregs and an elevated inflammatory response. In COPD mice with SLC27A3 knockdown, the JAK2/STAT3 pathway was repressed, lung inflammation was decreased, Th17/Treg balance was improved, and lung functioning was improved. In conclusion, the findings of this study suggest that downregulating SLC27A3 has the potential to attenuate the inflammatory response, mitigate COPD progression, and rebalance the Th17/Treg ratio by inhibiting the JAK2/STAT3 signaling pathway. These results lay a foundation for utilizing SLC27A3 as a potential therapeutic target to modulate the JAK2/STAT3 pathway for the treatment of COPD, with the aim of enhancing lung function, reducing inflammation, and restoring Th17/Treg equilibrium in a clinical context.</p>\",\"PeriodicalId\":7536,\"journal\":{\"name\":\"Allergologia et immunopathologia\",\"volume\":\"53 1\",\"pages\":\"91-98\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Allergologia et immunopathologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15586/aei.v53i1.1215\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergologia et immunopathologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15586/aei.v53i1.1215","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是了解溶质载体家族27成员3 (SLC27A3)在慢性阻塞性肺疾病(COPD)小鼠肺组织中的表达情况及其与肺功能的关系。通过将生物体暴露于香烟烟雾中建立慢性阻塞性肺病模型,然后通过活体和实验室环境实验研究SLC27A3在慢性阻塞性肺病中的作用。通过siRNA转染产生SLC27A3缺失的敲除小鼠,采用苏木精-伊红染色和酶联免疫吸附法等方法研究肺功能和炎症反应。Western blotting分析SLC27A3的表达。Naïve用抗cd3、抗cd28、转化生长因子(TGF)-β和/或白细胞介素(IL)-6刺激CD4+ t细胞,通过流式细胞术检测,促进CD4+ t细胞向Th17或Treg细胞分化。Western blotting检测JAK2/STAT3的通路表达。SLC27A3在肺组织中表达水平较高的COPD小鼠表现出肺结构和功能异常,以及Th17和Tregs之间的不平衡和炎症反应升高。SLC27A3基因敲低的COPD小鼠,JAK2/STAT3通路受到抑制,肺部炎症减少,Th17/Treg平衡改善,肺功能改善。总之,本研究结果表明,下调SLC27A3有可能通过抑制JAK2/STAT3信号通路减轻炎症反应,减缓COPD进展,并重新平衡Th17/Treg比例。这些结果为利用SLC27A3作为潜在的治疗靶点来调节JAK2/STAT3通路治疗COPD奠定了基础,目的是在临床环境中增强肺功能,减少炎症,恢复Th17/Treg平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLC27A3 downregulation restores Th17/Treg balance and alleviates COPD via JAK2/STAT3 pathway inhibition.

The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay. Western blotting was carried out to analyze the expression of SLC27A3. Naïve CD4+ T-cells were stimulated with anti-CD3, anti-CD28, transforming growth factor (TGF)-β, and/or interleukin (IL)-6, and their differentiation into Th17 or Treg cells was promoted, as assessed by flow cytometry. The pathway expression of JAK2/STAT3 was detected using Western blotting. Mice with COPD that had higher expression levels of SLC27A3 in their lung tissue display abnormalities in lung architecture and function, as well as an imbalance between Th17 and Tregs and an elevated inflammatory response. In COPD mice with SLC27A3 knockdown, the JAK2/STAT3 pathway was repressed, lung inflammation was decreased, Th17/Treg balance was improved, and lung functioning was improved. In conclusion, the findings of this study suggest that downregulating SLC27A3 has the potential to attenuate the inflammatory response, mitigate COPD progression, and rebalance the Th17/Treg ratio by inhibiting the JAK2/STAT3 signaling pathway. These results lay a foundation for utilizing SLC27A3 as a potential therapeutic target to modulate the JAK2/STAT3 pathway for the treatment of COPD, with the aim of enhancing lung function, reducing inflammation, and restoring Th17/Treg equilibrium in a clinical context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Founded in 1972 by Professor A. Oehling, Allergologia et Immunopathologia is a forum for those working in the field of pediatric asthma, allergy and immunology. Manuscripts related to clinical, epidemiological and experimental allergy and immunopathology related to childhood will be considered for publication. Allergologia et Immunopathologia is the official journal of the Spanish Society of Pediatric Allergy and Clinical Immunology (SEICAP) and also of the Latin American Society of Immunodeficiencies (LASID). It has and independent international Editorial Committee which submits received papers for peer-reviewing by international experts. The journal accepts original and review articles from all over the world, together with consensus statements from the aforementioned societies. Occasionally, the opinion of an expert on a burning topic is published in the "Point of View" section. Letters to the Editor on previously published papers are welcomed. Allergologia et Immunopathologia publishes 6 issues per year and is included in the major databases such as Pubmed, Scopus, Web of Knowledge, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信