{"title":"探讨二甲双胍和脱氢姜酮对氟化钠诱导的神经毒性的保护作用:来自产前大鼠模型的证据。","authors":"Tejas Ahuja, Farmiza Begum, Gautam Kumar, Smita Shenoy, Nitesh Kumar, Rekha R Shenoy","doi":"10.1007/s13205-024-04175-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study is aimed at evaluating the neurotoxic effects of chronic exposure of sodium fluoride (NaF) in developmental stages in rat using prenatal models. NaF (100 ppm, orally) dosing via drinking water was given to pregnant rats in disease group. In the treatment groups, Metformin & Dehydrozingerone (DHZ) (200 mg/kg) were administered orally along with NaF, and the dosing was continued throughout the gestation and lactation periods to the pups until the end of experiment. Behavioural studies like Novel Object Recognition Test (NORT), Open Field & Actophotometer test and biochemical estimations like Acetylcholinesterase (AchE), Glutathione (GSH), Malondialdehyde (MDA) were conducted on animals followed by histopathological image analysis. It was observed that NaF exposure significantly decreased learning, memory and locomotor ability (at p < 0.05, p ≤ 0.01) in rat pups and was also able to induce anxiety like behavior. Levels of AchE (p ≤ 0.001) and MDA (p ≤ 0.01, p ≤ 0.001) was found to be significantly elevated and GSH levels were significantly decreased (p ≤ 0.01, p ≤ 0.001) in hippocampus and frontal cortex in the disease group. Histopathological image analysis showed presence of degenerated neurons in hippocampus of disease group. From this study, it was observed that treatment with Metformin and DHZ, was able to significantly ameliorate the cognitive impairments, improve the condition of oxidative stress and decrease neuronal degeneration in NaF fed rat pups. These results established the protective role of Metformin and DHZ in NaF induced neurodevelopmental toxicity with particular emphasis on their antioxidant properties.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 2","pages":"36"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711601/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the protective role of metformin and dehydrozingerone in sodium fluoride-induced neurotoxicity: evidence from prenatal rat models.\",\"authors\":\"Tejas Ahuja, Farmiza Begum, Gautam Kumar, Smita Shenoy, Nitesh Kumar, Rekha R Shenoy\",\"doi\":\"10.1007/s13205-024-04175-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study is aimed at evaluating the neurotoxic effects of chronic exposure of sodium fluoride (NaF) in developmental stages in rat using prenatal models. NaF (100 ppm, orally) dosing via drinking water was given to pregnant rats in disease group. In the treatment groups, Metformin & Dehydrozingerone (DHZ) (200 mg/kg) were administered orally along with NaF, and the dosing was continued throughout the gestation and lactation periods to the pups until the end of experiment. Behavioural studies like Novel Object Recognition Test (NORT), Open Field & Actophotometer test and biochemical estimations like Acetylcholinesterase (AchE), Glutathione (GSH), Malondialdehyde (MDA) were conducted on animals followed by histopathological image analysis. It was observed that NaF exposure significantly decreased learning, memory and locomotor ability (at p < 0.05, p ≤ 0.01) in rat pups and was also able to induce anxiety like behavior. Levels of AchE (p ≤ 0.001) and MDA (p ≤ 0.01, p ≤ 0.001) was found to be significantly elevated and GSH levels were significantly decreased (p ≤ 0.01, p ≤ 0.001) in hippocampus and frontal cortex in the disease group. Histopathological image analysis showed presence of degenerated neurons in hippocampus of disease group. From this study, it was observed that treatment with Metformin and DHZ, was able to significantly ameliorate the cognitive impairments, improve the condition of oxidative stress and decrease neuronal degeneration in NaF fed rat pups. These results established the protective role of Metformin and DHZ in NaF induced neurodevelopmental toxicity with particular emphasis on their antioxidant properties.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 2\",\"pages\":\"36\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711601/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04175-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04175-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在通过产前模型评估大鼠发育阶段长期暴露于氟化钠(NaF)的神经毒性作用。疾病组妊娠大鼠饮水给药NaF (100ppm,口服)。试验组在NaF的基础上口服二甲双胍脱氢锌酮(DHZ) 200 mg/kg,并在整个妊娠和哺乳期持续给药至试验结束。对大鼠进行新目标识别试验(NORT)、Open Field & Actophotometer试验等行为学研究和乙酰胆碱酯酶(AchE)、谷胱甘肽(GSH)、丙二醛(MDA)等生化评价,并进行组织病理学图像分析。观察到NaF暴露显著降低了学习、记忆和运动能力(p
Exploring the protective role of metformin and dehydrozingerone in sodium fluoride-induced neurotoxicity: evidence from prenatal rat models.
This study is aimed at evaluating the neurotoxic effects of chronic exposure of sodium fluoride (NaF) in developmental stages in rat using prenatal models. NaF (100 ppm, orally) dosing via drinking water was given to pregnant rats in disease group. In the treatment groups, Metformin & Dehydrozingerone (DHZ) (200 mg/kg) were administered orally along with NaF, and the dosing was continued throughout the gestation and lactation periods to the pups until the end of experiment. Behavioural studies like Novel Object Recognition Test (NORT), Open Field & Actophotometer test and biochemical estimations like Acetylcholinesterase (AchE), Glutathione (GSH), Malondialdehyde (MDA) were conducted on animals followed by histopathological image analysis. It was observed that NaF exposure significantly decreased learning, memory and locomotor ability (at p < 0.05, p ≤ 0.01) in rat pups and was also able to induce anxiety like behavior. Levels of AchE (p ≤ 0.001) and MDA (p ≤ 0.01, p ≤ 0.001) was found to be significantly elevated and GSH levels were significantly decreased (p ≤ 0.01, p ≤ 0.001) in hippocampus and frontal cortex in the disease group. Histopathological image analysis showed presence of degenerated neurons in hippocampus of disease group. From this study, it was observed that treatment with Metformin and DHZ, was able to significantly ameliorate the cognitive impairments, improve the condition of oxidative stress and decrease neuronal degeneration in NaF fed rat pups. These results established the protective role of Metformin and DHZ in NaF induced neurodevelopmental toxicity with particular emphasis on their antioxidant properties.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.