Zuolong Zhang, Gang Luo, Yixuan Ma, Zhaoqi Wu, Shuo Peng, Shengbo Chen, Yi Wu
{"title":"GraphkmerDTA:整合局部序列模式和拓扑信息进行药物-靶点结合亲和力预测及在多靶点抗阿尔茨海默病药物发现中的应用。","authors":"Zuolong Zhang, Gang Luo, Yixuan Ma, Zhaoqi Wu, Shuo Peng, Shengbo Chen, Yi Wu","doi":"10.1007/s11030-024-11065-7","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise. Secondly, structure-based methods prioritize extracting topological information but struggle to effectively capture sequence features. To address these challenges, we propose a novel deep learning model named GraphkmerDTA, which integrates Kmer features with structural topology. Specifically, GraphkmerDTA utilizes graph neural networks to extract topological features from both molecules and proteins, while fully connected networks learn local sequence patterns from the Kmer features of proteins. Experimental results indicate that GraphkmerDTA outperforms existing methods on benchmark datasets. Furthermore, a case study on lung cancer demonstrates the effectiveness of GraphkmerDTA, as it successfully identifies seven known EGFR inhibitors from a screening library of over two thousand compounds. To further assess the practical utility of GraphkmerDTA, we integrated it with network pharmacology to investigate the mechanisms underlying the therapeutic effects of Lonicera japonica flower in treating Alzheimer's disease. Through this interdisciplinary approach, three potential compounds were identified and subsequently validated through molecular docking studies. In conclusion, we present not only a novel AI model for the DTA task but also demonstrate its practical application in drug discovery by integrating modern AI approaches with traditional drug discovery methodologies.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.\",\"authors\":\"Zuolong Zhang, Gang Luo, Yixuan Ma, Zhaoqi Wu, Shuo Peng, Shengbo Chen, Yi Wu\",\"doi\":\"10.1007/s11030-024-11065-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise. Secondly, structure-based methods prioritize extracting topological information but struggle to effectively capture sequence features. To address these challenges, we propose a novel deep learning model named GraphkmerDTA, which integrates Kmer features with structural topology. Specifically, GraphkmerDTA utilizes graph neural networks to extract topological features from both molecules and proteins, while fully connected networks learn local sequence patterns from the Kmer features of proteins. Experimental results indicate that GraphkmerDTA outperforms existing methods on benchmark datasets. Furthermore, a case study on lung cancer demonstrates the effectiveness of GraphkmerDTA, as it successfully identifies seven known EGFR inhibitors from a screening library of over two thousand compounds. To further assess the practical utility of GraphkmerDTA, we integrated it with network pharmacology to investigate the mechanisms underlying the therapeutic effects of Lonicera japonica flower in treating Alzheimer's disease. Through this interdisciplinary approach, three potential compounds were identified and subsequently validated through molecular docking studies. In conclusion, we present not only a novel AI model for the DTA task but also demonstrate its practical application in drug discovery by integrating modern AI approaches with traditional drug discovery methodologies.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11065-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11065-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.
Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise. Secondly, structure-based methods prioritize extracting topological information but struggle to effectively capture sequence features. To address these challenges, we propose a novel deep learning model named GraphkmerDTA, which integrates Kmer features with structural topology. Specifically, GraphkmerDTA utilizes graph neural networks to extract topological features from both molecules and proteins, while fully connected networks learn local sequence patterns from the Kmer features of proteins. Experimental results indicate that GraphkmerDTA outperforms existing methods on benchmark datasets. Furthermore, a case study on lung cancer demonstrates the effectiveness of GraphkmerDTA, as it successfully identifies seven known EGFR inhibitors from a screening library of over two thousand compounds. To further assess the practical utility of GraphkmerDTA, we integrated it with network pharmacology to investigate the mechanisms underlying the therapeutic effects of Lonicera japonica flower in treating Alzheimer's disease. Through this interdisciplinary approach, three potential compounds were identified and subsequently validated through molecular docking studies. In conclusion, we present not only a novel AI model for the DTA task but also demonstrate its practical application in drug discovery by integrating modern AI approaches with traditional drug discovery methodologies.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;