Renganathan Vijayan, Ponnurengam Malliappan Sivakumar, Selcuk Hazir, A Ram Kumar, Ramalingam Karthik Raja
{"title":"荷叶莲生物活性化合物提取物抗肿瘤蛋白的植物化学和抗氧化分析:硅光谱方法。","authors":"Renganathan Vijayan, Ponnurengam Malliappan Sivakumar, Selcuk Hazir, A Ram Kumar, Ramalingam Karthik Raja","doi":"10.1007/s12010-024-05167-z","DOIUrl":null,"url":null,"abstract":"<p><p>Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N. nucifera reveals the presence of alkaloids, carbohydrates, saponin, phenol, and flavonoids. The antioxidant efficacy of N. nucifera extract against DPPH and ABTS radicals increased in a concentration-dependent manner, with an IC<sub>50</sub> value of 222.84 µg and 52.67 µg, respectively. The simulated structural parameters of phytol exhibited strong concordance with experimental values. The simulated wavenumbers identified characteristic peaks corresponding to hydroxyl (OH), methylene (CH<sub>2</sub>), and methyl (CH<sub>3</sub>) groups. The simulated electronic spectrum of phytol exhibits a prominent absorption peak at 174 nm, predominantly attributed to the transitions H-1 → L (58%) and H → L (36%). NBO analysis reveals significant stabilization energy (7.09 kJ/mol) due to the donation of electrons from the C<sub>20</sub>-H<sub>58</sub> bonding orbital to the anti-bonding orbital of C<sub>18</sub>-C<sub>19</sub> via a σ → σ* transition. In Mulliken charge distribution, compared to other hydrogen, hydrogen H<sub>61</sub> in the hydroxyl (O-H) group exhibits a higher positive potential due to the influence of the oxygen atom. In addition, molecular docking was performed against breast cancer SMAD proteins to confirm its antagonist property, with binding energies of - 3.64 kcal/mol (6OM2), - 5.49 kcal/mol (1U7F), - 5.05 kcal/mol (1U7V), and - 3.73 kcal/mol (6FX4).</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytochemical and Antioxidant Analysis of Bioactive Compound Extract from Nelumbo nucifera against Cancer Proteins: In Silico Spectroscopic Approach.\",\"authors\":\"Renganathan Vijayan, Ponnurengam Malliappan Sivakumar, Selcuk Hazir, A Ram Kumar, Ramalingam Karthik Raja\",\"doi\":\"10.1007/s12010-024-05167-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N. nucifera reveals the presence of alkaloids, carbohydrates, saponin, phenol, and flavonoids. The antioxidant efficacy of N. nucifera extract against DPPH and ABTS radicals increased in a concentration-dependent manner, with an IC<sub>50</sub> value of 222.84 µg and 52.67 µg, respectively. The simulated structural parameters of phytol exhibited strong concordance with experimental values. The simulated wavenumbers identified characteristic peaks corresponding to hydroxyl (OH), methylene (CH<sub>2</sub>), and methyl (CH<sub>3</sub>) groups. The simulated electronic spectrum of phytol exhibits a prominent absorption peak at 174 nm, predominantly attributed to the transitions H-1 → L (58%) and H → L (36%). NBO analysis reveals significant stabilization energy (7.09 kJ/mol) due to the donation of electrons from the C<sub>20</sub>-H<sub>58</sub> bonding orbital to the anti-bonding orbital of C<sub>18</sub>-C<sub>19</sub> via a σ → σ* transition. In Mulliken charge distribution, compared to other hydrogen, hydrogen H<sub>61</sub> in the hydroxyl (O-H) group exhibits a higher positive potential due to the influence of the oxygen atom. In addition, molecular docking was performed against breast cancer SMAD proteins to confirm its antagonist property, with binding energies of - 3.64 kcal/mol (6OM2), - 5.49 kcal/mol (1U7F), - 5.05 kcal/mol (1U7V), and - 3.73 kcal/mol (6FX4).</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05167-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05167-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Phytochemical and Antioxidant Analysis of Bioactive Compound Extract from Nelumbo nucifera against Cancer Proteins: In Silico Spectroscopic Approach.
Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N. nucifera reveals the presence of alkaloids, carbohydrates, saponin, phenol, and flavonoids. The antioxidant efficacy of N. nucifera extract against DPPH and ABTS radicals increased in a concentration-dependent manner, with an IC50 value of 222.84 µg and 52.67 µg, respectively. The simulated structural parameters of phytol exhibited strong concordance with experimental values. The simulated wavenumbers identified characteristic peaks corresponding to hydroxyl (OH), methylene (CH2), and methyl (CH3) groups. The simulated electronic spectrum of phytol exhibits a prominent absorption peak at 174 nm, predominantly attributed to the transitions H-1 → L (58%) and H → L (36%). NBO analysis reveals significant stabilization energy (7.09 kJ/mol) due to the donation of electrons from the C20-H58 bonding orbital to the anti-bonding orbital of C18-C19 via a σ → σ* transition. In Mulliken charge distribution, compared to other hydrogen, hydrogen H61 in the hydroxyl (O-H) group exhibits a higher positive potential due to the influence of the oxygen atom. In addition, molecular docking was performed against breast cancer SMAD proteins to confirm its antagonist property, with binding energies of - 3.64 kcal/mol (6OM2), - 5.49 kcal/mol (1U7F), - 5.05 kcal/mol (1U7V), and - 3.73 kcal/mol (6FX4).
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.