可调谐nse - ni3se2异质结耦合尿素降解高效制氢

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ruilian Yin, Zhiwei Wang, Jin Zhang, Wenxian Liu, Jia He, Guangzhi Hu, Xijun Liu
{"title":"可调谐nse - ni3se2异质结耦合尿素降解高效制氢","authors":"Ruilian Yin, Zhiwei Wang, Jin Zhang, Wenxian Liu, Jia He, Guangzhi Hu, Xijun Liu","doi":"10.1002/smtd.202401976","DOIUrl":null,"url":null,"abstract":"<p><p>Urea-assisted water splitting is a promising energy-saving hydrogen (H<sub>2</sub>) production technology. However, its practical application is hindered by the lack of high-performance bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Herein, a heterostructured catalyst comprising highly active NiSe and Ni<sub>3</sub>Se<sub>2</sub>, along with a conductive graphene-coated nickel foam skeleton (NiSe-Ni<sub>3</sub>Se<sub>2</sub>/GNF) is reported. The heterostructured NiSe-Ni<sub>3</sub>Se<sub>2</sub> originates from the in situ selenization of graphene-coated nickel foam, allowing for careful regulation of the NiSe to Ni<sub>3</sub>Se<sub>2</sub> ratio by simply adjusting the calcination temperature. Theoretical calculations of the charge transfer between NiSe and Ni<sub>3</sub>Se<sub>2</sub> components can optimize the reaction pathways and reduce the corresponding energy barriers. Accordingly, the designed catalyst exhibits excellent UOR and HER activity and stability. Furthermore, the NiSe-Ni<sub>3</sub>Se<sub>2</sub>/GNF-based UOR-HER electrolyzer requires only 1.54 V to achieve a current density of 50 mA cm<sup>-2</sup>, which is lower than many recent reports and much lower than 1.83 V of NiSe-Ni<sub>3</sub>Se<sub>2</sub>/GNF-based OER-HER electrolyzers. Moreover, the UOR-HER electrolyzer exhibited negligible cell voltage variation during a 28-h stability test, indicating satisfactory stability, which provides a new viable paradigm for energy-saving H<sub>2</sub> production.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401976"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable NiSe-Ni<sub>3</sub>Se<sub>2</sub> Heterojunction for Energy-Efficient Hydrogen Production by Coupling Urea Degradation.\",\"authors\":\"Ruilian Yin, Zhiwei Wang, Jin Zhang, Wenxian Liu, Jia He, Guangzhi Hu, Xijun Liu\",\"doi\":\"10.1002/smtd.202401976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urea-assisted water splitting is a promising energy-saving hydrogen (H<sub>2</sub>) production technology. However, its practical application is hindered by the lack of high-performance bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Herein, a heterostructured catalyst comprising highly active NiSe and Ni<sub>3</sub>Se<sub>2</sub>, along with a conductive graphene-coated nickel foam skeleton (NiSe-Ni<sub>3</sub>Se<sub>2</sub>/GNF) is reported. The heterostructured NiSe-Ni<sub>3</sub>Se<sub>2</sub> originates from the in situ selenization of graphene-coated nickel foam, allowing for careful regulation of the NiSe to Ni<sub>3</sub>Se<sub>2</sub> ratio by simply adjusting the calcination temperature. Theoretical calculations of the charge transfer between NiSe and Ni<sub>3</sub>Se<sub>2</sub> components can optimize the reaction pathways and reduce the corresponding energy barriers. Accordingly, the designed catalyst exhibits excellent UOR and HER activity and stability. Furthermore, the NiSe-Ni<sub>3</sub>Se<sub>2</sub>/GNF-based UOR-HER electrolyzer requires only 1.54 V to achieve a current density of 50 mA cm<sup>-2</sup>, which is lower than many recent reports and much lower than 1.83 V of NiSe-Ni<sub>3</sub>Se<sub>2</sub>/GNF-based OER-HER electrolyzers. Moreover, the UOR-HER electrolyzer exhibited negligible cell voltage variation during a 28-h stability test, indicating satisfactory stability, which provides a new viable paradigm for energy-saving H<sub>2</sub> production.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401976\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401976\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401976","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尿素辅助水裂解是一种很有前途的节能制氢技术。然而,由于缺乏用于尿素氧化反应(UOR)和析氢反应(HER)的高性能双功能催化剂,阻碍了其实际应用。本文报道了一种由高活性NiSe和Ni3Se2组成的异质结构催化剂,以及导电石墨烯包覆的泡沫镍骨架(NiSe-Ni3Se2/GNF)。异质结构的NiSe-Ni3Se2源于石墨烯包覆泡沫镍的原位硒化,通过简单地调整煅烧温度就可以精确地调节NiSe与Ni3Se2的比例。理论计算NiSe和Ni3Se2组分之间的电荷转移可以优化反应途径,降低相应的能垒。因此,所设计的催化剂具有优异的UOR和HER活性和稳定性。此外,基于NiSe-Ni3Se2/ gnf的UOR-HER电解槽只需要1.54 V就能达到50 mA cm-2的电流密度,这比最近的许多报道都要低,也远低于基于NiSe-Ni3Se2/ gnf的OER-HER电解槽的1.83 V。此外,在28小时的稳定性测试中,UOR-HER电解槽的电池电压变化可以忽略不计,表明其稳定性令人满意,这为节能制氢提供了新的可行范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable NiSe-Ni3Se2 Heterojunction for Energy-Efficient Hydrogen Production by Coupling Urea Degradation.

Urea-assisted water splitting is a promising energy-saving hydrogen (H2) production technology. However, its practical application is hindered by the lack of high-performance bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Herein, a heterostructured catalyst comprising highly active NiSe and Ni3Se2, along with a conductive graphene-coated nickel foam skeleton (NiSe-Ni3Se2/GNF) is reported. The heterostructured NiSe-Ni3Se2 originates from the in situ selenization of graphene-coated nickel foam, allowing for careful regulation of the NiSe to Ni3Se2 ratio by simply adjusting the calcination temperature. Theoretical calculations of the charge transfer between NiSe and Ni3Se2 components can optimize the reaction pathways and reduce the corresponding energy barriers. Accordingly, the designed catalyst exhibits excellent UOR and HER activity and stability. Furthermore, the NiSe-Ni3Se2/GNF-based UOR-HER electrolyzer requires only 1.54 V to achieve a current density of 50 mA cm-2, which is lower than many recent reports and much lower than 1.83 V of NiSe-Ni3Se2/GNF-based OER-HER electrolyzers. Moreover, the UOR-HER electrolyzer exhibited negligible cell voltage variation during a 28-h stability test, indicating satisfactory stability, which provides a new viable paradigm for energy-saving H2 production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信