Lingxiao Zhang , Jie Bai , Aining Shen , Jing Zhao , Zhenwei Su , Maoze Wang , Mingdong Dong , Zhi Ping Xu
{"title":"用纳米铝佐剂拴系抗原mRNA人工标记肿瘤,招募并激活抗原特异性细胞毒性T细胞,以增强癌症免疫治疗。","authors":"Lingxiao Zhang , Jie Bai , Aining Shen , Jing Zhao , Zhenwei Su , Maoze Wang , Mingdong Dong , Zhi Ping Xu","doi":"10.1016/j.biomaterials.2025.123085","DOIUrl":null,"url":null,"abstract":"<div><div>T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors. Particularly, once internalization by tumor cells, MO@NAL efficiently tags the tumor cell surface with OVA through the carried mOVA, providing targets for recruiting and directing the antigen-specific cytotoxic T cells to destroy tumor cells. In mice pre-vaccinated with the OVA vaccine, intratumoral administration of MO@NAL rapidly awakens OVA-specific immune memory, rapidly and effectively inhibiting the progression of colon tumors and melanoma at both early and advanced stages. In non-pre-vaccinated mice, combining MO@NAL with the OVA therapeutic vaccine or OVA-specific adoptive T cell transfusion similarly achieves robust solid tumor suppression. These findings thus underscore the potential of MO@NAL as an effective and safe immunomodulator for enhancing cytotoxic T cell responses and providing timely intervention in solid tumor progression.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"317 ","pages":"Article 123085"},"PeriodicalIF":12.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy\",\"authors\":\"Lingxiao Zhang , Jie Bai , Aining Shen , Jing Zhao , Zhenwei Su , Maoze Wang , Mingdong Dong , Zhi Ping Xu\",\"doi\":\"10.1016/j.biomaterials.2025.123085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors. Particularly, once internalization by tumor cells, MO@NAL efficiently tags the tumor cell surface with OVA through the carried mOVA, providing targets for recruiting and directing the antigen-specific cytotoxic T cells to destroy tumor cells. In mice pre-vaccinated with the OVA vaccine, intratumoral administration of MO@NAL rapidly awakens OVA-specific immune memory, rapidly and effectively inhibiting the progression of colon tumors and melanoma at both early and advanced stages. In non-pre-vaccinated mice, combining MO@NAL with the OVA therapeutic vaccine or OVA-specific adoptive T cell transfusion similarly achieves robust solid tumor suppression. These findings thus underscore the potential of MO@NAL as an effective and safe immunomodulator for enhancing cytotoxic T cell responses and providing timely intervention in solid tumor progression.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"317 \",\"pages\":\"Article 123085\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961225000043\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225000043","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy
T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors. Particularly, once internalization by tumor cells, MO@NAL efficiently tags the tumor cell surface with OVA through the carried mOVA, providing targets for recruiting and directing the antigen-specific cytotoxic T cells to destroy tumor cells. In mice pre-vaccinated with the OVA vaccine, intratumoral administration of MO@NAL rapidly awakens OVA-specific immune memory, rapidly and effectively inhibiting the progression of colon tumors and melanoma at both early and advanced stages. In non-pre-vaccinated mice, combining MO@NAL with the OVA therapeutic vaccine or OVA-specific adoptive T cell transfusion similarly achieves robust solid tumor suppression. These findings thus underscore the potential of MO@NAL as an effective and safe immunomodulator for enhancing cytotoxic T cell responses and providing timely intervention in solid tumor progression.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.