Yuhan Gao, Chenhao Bu, Panfei Chen, Xuri Hao, Rui Zhang, Menglei Wang, Liang Du, Deqiang Zhang, Yuepeng Song
{"title":"NAA20是双作用进化保守的NatB催化亚基,调控杨树根系发育对盐和渗透胁迫的响应。","authors":"Yuhan Gao, Chenhao Bu, Panfei Chen, Xuri Hao, Rui Zhang, Menglei Wang, Liang Du, Deqiang Zhang, Yuepeng Song","doi":"10.1111/jipb.13835","DOIUrl":null,"url":null,"abstract":"<p><p>In Populus simonii, the N-terminal acetyltransferase subunit gene PsiNAA20 was induced by salt stress and osmotic stress and regulates root development. The spatiotemporal specificity of PsiNAA20-interacting gene expression and translation efficiency suggested dual functions in poplar root development under salt stress and osmotic stress.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dual-action evolutionarily conserved NatB catalytic subunit NAA20 regulates poplar root development in response to salt and osmotic stresses.\",\"authors\":\"Yuhan Gao, Chenhao Bu, Panfei Chen, Xuri Hao, Rui Zhang, Menglei Wang, Liang Du, Deqiang Zhang, Yuepeng Song\",\"doi\":\"10.1111/jipb.13835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Populus simonii, the N-terminal acetyltransferase subunit gene PsiNAA20 was induced by salt stress and osmotic stress and regulates root development. The spatiotemporal specificity of PsiNAA20-interacting gene expression and translation efficiency suggested dual functions in poplar root development under salt stress and osmotic stress.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jipb.13835\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13835","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The dual-action evolutionarily conserved NatB catalytic subunit NAA20 regulates poplar root development in response to salt and osmotic stresses.
In Populus simonii, the N-terminal acetyltransferase subunit gene PsiNAA20 was induced by salt stress and osmotic stress and regulates root development. The spatiotemporal specificity of PsiNAA20-interacting gene expression and translation efficiency suggested dual functions in poplar root development under salt stress and osmotic stress.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.