Xinlin Jiang , Zipeng Wu , Xiaoru Tan , Yichen Lin, Hui Xing, Yinglin Xuan, Dong Ma, Xin Cui
{"title":"基于运动β-CD/F-127聚轮紫檀微球的高亲和力尿酸清除促进糖尿病伤口修复。","authors":"Xinlin Jiang , Zipeng Wu , Xiaoru Tan , Yichen Lin, Hui Xing, Yinglin Xuan, Dong Ma, Xin Cui","doi":"10.1016/j.carbpol.2024.123128","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity. By leveraging the molecular motility of the polyrotaxane structure, featuring β-cyclodextrin (β-CD) shuttles along the F-127 axis, we significantly improved the molecular recognition between DT and UA for enhanced UA absorption efficiency. <em>In vitro</em> experiments confirmed that HPR/DT MS rapidly reduced UA levels compared to control groups. Using a type 2 diabetic wound model, HPR/DT MS treatment effectively reduced UA levels, suppressed COX-2 expression, and transformed the immune microenvironment from a pro-inflammatory to a regenerative state <em>in vivo</em>. This was accompanied by enhanced M2 macrophage polarization, angiogenesis, and improved blood perfusion, resulting in accelerated wound healing. Overall, these findings highlight HPR/DT MS as a promising therapeutic strategy for hyperuricemia-related diabetic wounds, targeting the core pathological factors to improve wound repair.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"351 ","pages":"Article 123128"},"PeriodicalIF":12.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-affinity uric acid clearance based on motile β-CD/F-127 polyrotaxane microspheres for enhanced diabetic wound repair\",\"authors\":\"Xinlin Jiang , Zipeng Wu , Xiaoru Tan , Yichen Lin, Hui Xing, Yinglin Xuan, Dong Ma, Xin Cui\",\"doi\":\"10.1016/j.carbpol.2024.123128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity. By leveraging the molecular motility of the polyrotaxane structure, featuring β-cyclodextrin (β-CD) shuttles along the F-127 axis, we significantly improved the molecular recognition between DT and UA for enhanced UA absorption efficiency. <em>In vitro</em> experiments confirmed that HPR/DT MS rapidly reduced UA levels compared to control groups. Using a type 2 diabetic wound model, HPR/DT MS treatment effectively reduced UA levels, suppressed COX-2 expression, and transformed the immune microenvironment from a pro-inflammatory to a regenerative state <em>in vivo</em>. This was accompanied by enhanced M2 macrophage polarization, angiogenesis, and improved blood perfusion, resulting in accelerated wound healing. Overall, these findings highlight HPR/DT MS as a promising therapeutic strategy for hyperuricemia-related diabetic wounds, targeting the core pathological factors to improve wound repair.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"351 \",\"pages\":\"Article 123128\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724013547\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724013547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
High-affinity uric acid clearance based on motile β-CD/F-127 polyrotaxane microspheres for enhanced diabetic wound repair
Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity. By leveraging the molecular motility of the polyrotaxane structure, featuring β-cyclodextrin (β-CD) shuttles along the F-127 axis, we significantly improved the molecular recognition between DT and UA for enhanced UA absorption efficiency. In vitro experiments confirmed that HPR/DT MS rapidly reduced UA levels compared to control groups. Using a type 2 diabetic wound model, HPR/DT MS treatment effectively reduced UA levels, suppressed COX-2 expression, and transformed the immune microenvironment from a pro-inflammatory to a regenerative state in vivo. This was accompanied by enhanced M2 macrophage polarization, angiogenesis, and improved blood perfusion, resulting in accelerated wound healing. Overall, these findings highlight HPR/DT MS as a promising therapeutic strategy for hyperuricemia-related diabetic wounds, targeting the core pathological factors to improve wound repair.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.