Xiao-Na Le , Da-Ping Long , Shuang-Shuang Yin , Ren-Yan Qing , Zhi-Zheng Chi , Ming-Qing Gao , Ming-Qiang Zhu
{"title":"膜过滤技术高效分离杜仲生物活性成分及其预防酒精性肝病的作用机制。","authors":"Xiao-Na Le , Da-Ping Long , Shuang-Shuang Yin , Ren-Yan Qing , Zhi-Zheng Chi , Ming-Qing Gao , Ming-Qiang Zhu","doi":"10.1016/j.carbpol.2024.123100","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient extraction and purification of active components from <em>Eucommia ulmoides</em> Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.82 %, from which nine active components were identified. The yield of EUO leaf polysaccharides was 8.06 %, and the polysaccharides were fractionated into three components ELP1, ELP2, and ELP3 through ultrafiltration technology, with yields of 4.19 %, 1.26 %, and 2.59 %, respectively. Ultrafiltration significantly reduced protein content, enhanced polysaccharide homogeneity, and altered monosaccharide composition. ELP3 exhibited higher scavenging efficacy on •OH and ABTS•<sup>+</sup> than ELP1 and ELP2, reaching 82.53 % and 88.41 % respectively. ELP3 and ELE intervention preserved liver integrity, mitigated lipid accumulation and inflammation, and regulated hepatic oxidative stress. Moreover, they maintained intestinal barrier function, suppressed harmful bacteria (Escherichia-Shigella, and UBA1819), and promoted beneficial bacteria (<em>Dubosiella</em>, <em>Monoglobus</em>, and <em>Lachnospiraceae</em>). Thirteen hallmark differential metabolites were identified, and KEGG pathway enrichment analysis suggested that ELP3 and ELE may ameliorate ALD through pathways like longevity regulation, choline metabolism in cancer, oxidative phosphorylation, and AMPK signaling pathway. This investigation holds significance in delineating the beneficial effects of ELP3 and ELE in ALD alleviation.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"351 ","pages":"Article 123100"},"PeriodicalIF":12.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The efficient separation of bioactive components from Eucommia ulmoides Oliver using membrane filtration technology and its mechanisms in preventing alcoholic liver disease\",\"authors\":\"Xiao-Na Le , Da-Ping Long , Shuang-Shuang Yin , Ren-Yan Qing , Zhi-Zheng Chi , Ming-Qing Gao , Ming-Qiang Zhu\",\"doi\":\"10.1016/j.carbpol.2024.123100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient extraction and purification of active components from <em>Eucommia ulmoides</em> Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.82 %, from which nine active components were identified. The yield of EUO leaf polysaccharides was 8.06 %, and the polysaccharides were fractionated into three components ELP1, ELP2, and ELP3 through ultrafiltration technology, with yields of 4.19 %, 1.26 %, and 2.59 %, respectively. Ultrafiltration significantly reduced protein content, enhanced polysaccharide homogeneity, and altered monosaccharide composition. ELP3 exhibited higher scavenging efficacy on •OH and ABTS•<sup>+</sup> than ELP1 and ELP2, reaching 82.53 % and 88.41 % respectively. ELP3 and ELE intervention preserved liver integrity, mitigated lipid accumulation and inflammation, and regulated hepatic oxidative stress. Moreover, they maintained intestinal barrier function, suppressed harmful bacteria (Escherichia-Shigella, and UBA1819), and promoted beneficial bacteria (<em>Dubosiella</em>, <em>Monoglobus</em>, and <em>Lachnospiraceae</em>). Thirteen hallmark differential metabolites were identified, and KEGG pathway enrichment analysis suggested that ELP3 and ELE may ameliorate ALD through pathways like longevity regulation, choline metabolism in cancer, oxidative phosphorylation, and AMPK signaling pathway. This investigation holds significance in delineating the beneficial effects of ELP3 and ELE in ALD alleviation.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"351 \",\"pages\":\"Article 123100\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724013262\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724013262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
The efficient separation of bioactive components from Eucommia ulmoides Oliver using membrane filtration technology and its mechanisms in preventing alcoholic liver disease
The efficient extraction and purification of active components from Eucommia ulmoides Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.82 %, from which nine active components were identified. The yield of EUO leaf polysaccharides was 8.06 %, and the polysaccharides were fractionated into three components ELP1, ELP2, and ELP3 through ultrafiltration technology, with yields of 4.19 %, 1.26 %, and 2.59 %, respectively. Ultrafiltration significantly reduced protein content, enhanced polysaccharide homogeneity, and altered monosaccharide composition. ELP3 exhibited higher scavenging efficacy on •OH and ABTS•+ than ELP1 and ELP2, reaching 82.53 % and 88.41 % respectively. ELP3 and ELE intervention preserved liver integrity, mitigated lipid accumulation and inflammation, and regulated hepatic oxidative stress. Moreover, they maintained intestinal barrier function, suppressed harmful bacteria (Escherichia-Shigella, and UBA1819), and promoted beneficial bacteria (Dubosiella, Monoglobus, and Lachnospiraceae). Thirteen hallmark differential metabolites were identified, and KEGG pathway enrichment analysis suggested that ELP3 and ELE may ameliorate ALD through pathways like longevity regulation, choline metabolism in cancer, oxidative phosphorylation, and AMPK signaling pathway. This investigation holds significance in delineating the beneficial effects of ELP3 and ELE in ALD alleviation.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.