展望未来——光与化学生物学结合治疗视网膜病变的展望。

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL
ChemMedChem Pub Date : 2025-01-08 DOI:10.1002/cmdc.202400827
Alexandre Specht, Maxime Klimezak, Sidney Cambridge
{"title":"展望未来——光与化学生物学结合治疗视网膜病变的展望。","authors":"Alexandre Specht, Maxime Klimezak, Sidney Cambridge","doi":"10.1002/cmdc.202400827","DOIUrl":null,"url":null,"abstract":"<p><p>New concepts to treat eye diseases have emerged that elegantly combine unnatural light exposure with chemical biology approaches to achieve superior cellular specificity and, as a result, improvement of visual function. Historically, light exposure without further molecular eye treatment has offered limited success including photocoagulation to halt pathological blood vessel growth or low light exposure to stimulate retinal cell viability. To add cellular specificity to such treatments, researchers have introduced various biological or chemical light-sensing molecules and combined those with light exposure. (Pre-)clinical trials describe the use of optogenetics and channelrhodpsins, i. e. light-sensitive ion channels, in patient vision restoration. In the chemical arena, pharmacological agents, rendered light-sensitive by reversible modification with photosensitive protecting compounds (\"caging\"), have been applied to eyes of living mice to photo-release specific cellular activities. Among these were successful proof-of-principle experiments that were conducted to establish photo-sensitive gene therapies in the eye. For light-mediated treatment in combination with chemical biology, we wish to describe here the current frontiers of research in vision restoration with an eye on differences between biological and chemical light-sensing molecules, patient requirements, and future outlooks.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400827"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeing in the Future - a Perspective on Combining Light with Chemical Biology Approaches to Treat Retinal Pathologies.\",\"authors\":\"Alexandre Specht, Maxime Klimezak, Sidney Cambridge\",\"doi\":\"10.1002/cmdc.202400827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New concepts to treat eye diseases have emerged that elegantly combine unnatural light exposure with chemical biology approaches to achieve superior cellular specificity and, as a result, improvement of visual function. Historically, light exposure without further molecular eye treatment has offered limited success including photocoagulation to halt pathological blood vessel growth or low light exposure to stimulate retinal cell viability. To add cellular specificity to such treatments, researchers have introduced various biological or chemical light-sensing molecules and combined those with light exposure. (Pre-)clinical trials describe the use of optogenetics and channelrhodpsins, i. e. light-sensitive ion channels, in patient vision restoration. In the chemical arena, pharmacological agents, rendered light-sensitive by reversible modification with photosensitive protecting compounds (\\\"caging\\\"), have been applied to eyes of living mice to photo-release specific cellular activities. Among these were successful proof-of-principle experiments that were conducted to establish photo-sensitive gene therapies in the eye. For light-mediated treatment in combination with chemical biology, we wish to describe here the current frontiers of research in vision restoration with an eye on differences between biological and chemical light-sensing molecules, patient requirements, and future outlooks.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400827\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400827\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400827","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

治疗眼病的新概念已经出现,它巧妙地将非自然光照射与化学生物学方法结合起来,以实现卓越的细胞特异性,从而改善视觉功能。从历史上看,没有进一步的分子眼治疗的光暴露已经提供了有限的成功,包括光凝来阻止病理性血管生长或低光暴露来刺激视网膜细胞活力。为了增加这种治疗的细胞特异性,研究人员引入了各种生物或化学光敏分子,并将它们与光照射结合起来。(预)临床试验描述了光遗传学和通道rhodpsins的使用。光敏离子通道,用于患者视力恢复。在化学领域,通过光敏保护化合物(“笼化”)的可逆修饰使药理学药物具有光敏性,已应用于活小鼠的眼睛,以释放光释放特定的细胞活动。其中包括成功的原理验证实验,用于在眼睛中建立光敏基因疗法。对于光介导治疗与化学生物学相结合,我们希望在这里描述当前视力恢复研究的前沿,并着眼于生物和化学光敏分子之间的差异,患者需求和未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeing in the Future - a Perspective on Combining Light with Chemical Biology Approaches to Treat Retinal Pathologies.

New concepts to treat eye diseases have emerged that elegantly combine unnatural light exposure with chemical biology approaches to achieve superior cellular specificity and, as a result, improvement of visual function. Historically, light exposure without further molecular eye treatment has offered limited success including photocoagulation to halt pathological blood vessel growth or low light exposure to stimulate retinal cell viability. To add cellular specificity to such treatments, researchers have introduced various biological or chemical light-sensing molecules and combined those with light exposure. (Pre-)clinical trials describe the use of optogenetics and channelrhodpsins, i. e. light-sensitive ion channels, in patient vision restoration. In the chemical arena, pharmacological agents, rendered light-sensitive by reversible modification with photosensitive protecting compounds ("caging"), have been applied to eyes of living mice to photo-release specific cellular activities. Among these were successful proof-of-principle experiments that were conducted to establish photo-sensitive gene therapies in the eye. For light-mediated treatment in combination with chemical biology, we wish to describe here the current frontiers of research in vision restoration with an eye on differences between biological and chemical light-sensing molecules, patient requirements, and future outlooks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信