微RNA-200c检测西兰花荧光发光适配体的设计与表征。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-01-10 DOI:10.1002/cbic.202400772
Corinna Kersten, Stefan Zahler, Sabine Schneider
{"title":"微RNA-200c检测西兰花荧光发光适配体的设计与表征。","authors":"Corinna Kersten, Stefan Zahler, Sabine Schneider","doi":"10.1002/cbic.202400772","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23 nt provide challenges for their investigation. Here we report the conversion and optimization of the Broccoli fluorescent light-up RNA-aptamer into a specific sensor for miR-200c using a strand-displacement design principle. This aptamer can differentiate miR-200c from its family members whose sequence differ by more than one nucleotide. By adding this in vitro transcribed aptamer to RNA extracts from human cells, we can detect miR-200c in vitro in a plate reader assay.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400772"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Characterization of a Micro RNA-200c Detecting Broccoli Fluorescent Light-up Aptamer.\",\"authors\":\"Corinna Kersten, Stefan Zahler, Sabine Schneider\",\"doi\":\"10.1002/cbic.202400772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23 nt provide challenges for their investigation. Here we report the conversion and optimization of the Broccoli fluorescent light-up RNA-aptamer into a specific sensor for miR-200c using a strand-displacement design principle. This aptamer can differentiate miR-200c from its family members whose sequence differ by more than one nucleotide. By adding this in vitro transcribed aptamer to RNA extracts from human cells, we can detect miR-200c in vitro in a plate reader assay.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e202400772\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400772\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400772","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,小分子非编码rna如微rna (miRs)在健康和疾病状态下的基因调控中的重要作用越来越明显。mir -200家族已被证明在许多疾病中发挥关键作用,如癌症和神经退行性疾病,并可能对诊断和治疗具有潜在的重要意义。然而,约21-23nt的miRs大小为其研究带来了挑战。在这里,我们报道了利用链位移设计原理将西兰花荧光发光rna适体转化和优化为miR-200c的特定传感器。该适体可以将miR-200c与其序列差异超过一个核苷酸的家族成员区分开来。通过将这种体外转录的适体添加到人类细胞的RNA提取物中,我们可以在体外检测miR-200c。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Characterization of a Micro RNA-200c Detecting Broccoli Fluorescent Light-up Aptamer.

In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23 nt provide challenges for their investigation. Here we report the conversion and optimization of the Broccoli fluorescent light-up RNA-aptamer into a specific sensor for miR-200c using a strand-displacement design principle. This aptamer can differentiate miR-200c from its family members whose sequence differ by more than one nucleotide. By adding this in vitro transcribed aptamer to RNA extracts from human cells, we can detect miR-200c in vitro in a plate reader assay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信