{"title":"利用硫-氧转换:吲哚-巴比妥酸结构的动态光物理和抗癌活性的灵丹妙药。","authors":"Kartikay Tyagi, Reena Kumari, V Venkatesh","doi":"10.1002/cmdc.202400849","DOIUrl":null,"url":null,"abstract":"<p><p>The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6 a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities. A series of NIR-emitting indole-barbituric/thiobarbituric acid conjugates exhibiting aggregation-induced emission (AIE) were prepared, where the replacement of oxygen for sulfur strategy emerged as a magic bullet. On the evaluation of photophysical properties and chemopreventive efficacies, a significant improvement in the absorption and emission profile, cellular uptake, and antiproliferative activity was noted for sulfur counterparts. From the pool of the molecules, the lead molecule 6 a unveils a 55 nm emission shift, 142-fold increased anticancer profile, and ~4-fold elevated cellular uptake. Furthermore, the colocalization experiment unravels the nuclear localization of 6 a, where it causes severe DNA damage, arrests the cell cycle in the G2/M phase, and leads to the activation of p53-mediated apoptosis. Our experimental findings represent 6 a as a potential lead molecule possessing excellent anticancer potency in the HCT 116 cell line and HCT 116-derived 3D spheroid model.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400849"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Sulfur-for-Oxygen Shift: A Magic Bullet for Dynamic Photophysical and Anticancer Activities of Indole-Barbituric Acid Construct.\",\"authors\":\"Kartikay Tyagi, Reena Kumari, V Venkatesh\",\"doi\":\"10.1002/cmdc.202400849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6 a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities. A series of NIR-emitting indole-barbituric/thiobarbituric acid conjugates exhibiting aggregation-induced emission (AIE) were prepared, where the replacement of oxygen for sulfur strategy emerged as a magic bullet. On the evaluation of photophysical properties and chemopreventive efficacies, a significant improvement in the absorption and emission profile, cellular uptake, and antiproliferative activity was noted for sulfur counterparts. From the pool of the molecules, the lead molecule 6 a unveils a 55 nm emission shift, 142-fold increased anticancer profile, and ~4-fold elevated cellular uptake. Furthermore, the colocalization experiment unravels the nuclear localization of 6 a, where it causes severe DNA damage, arrests the cell cycle in the G2/M phase, and leads to the activation of p53-mediated apoptosis. Our experimental findings represent 6 a as a potential lead molecule possessing excellent anticancer potency in the HCT 116 cell line and HCT 116-derived 3D spheroid model.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400849\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400849\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400849","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Harnessing the Sulfur-for-Oxygen Shift: A Magic Bullet for Dynamic Photophysical and Anticancer Activities of Indole-Barbituric Acid Construct.
The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6 a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities. A series of NIR-emitting indole-barbituric/thiobarbituric acid conjugates exhibiting aggregation-induced emission (AIE) were prepared, where the replacement of oxygen for sulfur strategy emerged as a magic bullet. On the evaluation of photophysical properties and chemopreventive efficacies, a significant improvement in the absorption and emission profile, cellular uptake, and antiproliferative activity was noted for sulfur counterparts. From the pool of the molecules, the lead molecule 6 a unveils a 55 nm emission shift, 142-fold increased anticancer profile, and ~4-fold elevated cellular uptake. Furthermore, the colocalization experiment unravels the nuclear localization of 6 a, where it causes severe DNA damage, arrests the cell cycle in the G2/M phase, and leads to the activation of p53-mediated apoptosis. Our experimental findings represent 6 a as a potential lead molecule possessing excellent anticancer potency in the HCT 116 cell line and HCT 116-derived 3D spheroid model.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.