Carlos Sarabia, Isabel Salado, Alberto Fernández-Gil, Bridgett M vonHoldt, Michael Hofreiter, Carles Vilà, Jennifer A Leonard
{"title":"伊比利亚灰狼(Canis lupus)中犬类潜在的适应性遗传渗入。","authors":"Carlos Sarabia, Isabel Salado, Alberto Fernández-Gil, Bridgett M vonHoldt, Michael Hofreiter, Carles Vilà, Jennifer A Leonard","doi":"10.1111/mec.17639","DOIUrl":null,"url":null,"abstract":"<p><p>Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17639"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus).\",\"authors\":\"Carlos Sarabia, Isabel Salado, Alberto Fernández-Gil, Bridgett M vonHoldt, Michael Hofreiter, Carles Vilà, Jennifer A Leonard\",\"doi\":\"10.1111/mec.17639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17639\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17639\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17639","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus).
Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms