具有光热活性氧清除和抗菌活性的多功能水凝胶加速糖尿病伤口愈合。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yijia Xue, Fan Yang, Yunjiao He, Feilong Wang, Dandan Xia, Yunsong Liu
{"title":"具有光热活性氧清除和抗菌活性的多功能水凝胶加速糖尿病伤口愈合。","authors":"Yijia Xue, Fan Yang, Yunjiao He, Feilong Wang, Dandan Xia, Yunsong Liu","doi":"10.1002/adhm.202402236","DOIUrl":null,"url":null,"abstract":"<p><p>Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO<sub>2</sub> NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties. Here, this work designs a near-infrared (NIR) light-responsive gelatin methacryloyl (GelMA)/CeO<sub>2</sub>/polydopamine (PDA) hydrogel with antibacterial and antioxidant effects. The hydrogel exhibits a stable, efficient, and controllable photothermal conversion capacity under NIR stimulation. The hydrogel can be used to construct a local microenvironment conducive to chronic diabetic wound healing. Significant antibacterial effects of the NIR-responsive GelMA/CeO<sub>2</sub>/PDA hydrogel on both Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) are demonstrated by counting colony-forming units (CFUs) and in bacterial live/dead staining experiments. The strong antioxidant activity of hydrogels is demonstrated by measuring the level of reactive oxygen species (ROS). The effect of the NIR-responsive GelMA/CeO<sub>2</sub>/PDA hydrogel in terms of promoting diabetic wound healing is validated in full-thickness cutaneous wounds of diabetic rat models. Additionally, this work describes the mechanism by which the NIR-responsive GelMA/CeO<sub>2</sub>/PDA hydrogel promotes diabetic wound healing; the hydrogel inhibits the interleukin (IL)-17 signaling pathway. This NIR-responsive, multifunctional hydrogel dressing provides a targeted approach to diabetic wound healing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402236"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Hydrogel with Photothermal ROS Scavenging and Antibacterial Activity Accelerates Diabetic Wound Healing.\",\"authors\":\"Yijia Xue, Fan Yang, Yunjiao He, Feilong Wang, Dandan Xia, Yunsong Liu\",\"doi\":\"10.1002/adhm.202402236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO<sub>2</sub> NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties. Here, this work designs a near-infrared (NIR) light-responsive gelatin methacryloyl (GelMA)/CeO<sub>2</sub>/polydopamine (PDA) hydrogel with antibacterial and antioxidant effects. The hydrogel exhibits a stable, efficient, and controllable photothermal conversion capacity under NIR stimulation. The hydrogel can be used to construct a local microenvironment conducive to chronic diabetic wound healing. Significant antibacterial effects of the NIR-responsive GelMA/CeO<sub>2</sub>/PDA hydrogel on both Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) are demonstrated by counting colony-forming units (CFUs) and in bacterial live/dead staining experiments. The strong antioxidant activity of hydrogels is demonstrated by measuring the level of reactive oxygen species (ROS). The effect of the NIR-responsive GelMA/CeO<sub>2</sub>/PDA hydrogel in terms of promoting diabetic wound healing is validated in full-thickness cutaneous wounds of diabetic rat models. Additionally, this work describes the mechanism by which the NIR-responsive GelMA/CeO<sub>2</sub>/PDA hydrogel promotes diabetic wound healing; the hydrogel inhibits the interleukin (IL)-17 signaling pathway. This NIR-responsive, multifunctional hydrogel dressing provides a targeted approach to diabetic wound healing.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2402236\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202402236\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402236","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病创面愈合不良对人类健康构成严重威胁。过度的氧化应激和对细菌感染的易感性增加是阻碍糖尿病伤口愈合的关键问题。氧化铈纳米颗粒(CeO2 NPs)因其独特的抗氧化和抗菌性能而受到越来越多的关注。本文设计了一种具有抗菌和抗氧化作用的近红外(NIR)光响应明胶甲基丙烯酰(GelMA)/CeO2/聚多巴胺(PDA)水凝胶。该水凝胶在近红外刺激下表现出稳定、高效、可控的光热转化能力。该水凝胶可用于构建有利于慢性糖尿病创面愈合的局部微环境。通过菌落形成单位(cfu)计数和细菌活/死染色实验,证实了nir反应型GelMA/CeO2/PDA水凝胶对大肠杆菌(E.coli)和耐甲氧西林金黄色葡萄球菌(MRSA)的显著抗菌作用。通过测定活性氧(ROS)水平,证明了水凝胶具有较强的抗氧化活性。在糖尿病大鼠全层皮肤创面模型中验证了nir响应型GelMA/CeO2/PDA水凝胶促进糖尿病创面愈合的作用。此外,这项工作还描述了nir响应的GelMA/CeO2/PDA水凝胶促进糖尿病伤口愈合的机制;水凝胶抑制白细胞介素(IL)-17信号通路。这种nir反应,多功能水凝胶敷料为糖尿病伤口愈合提供了一种有针对性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctional Hydrogel with Photothermal ROS Scavenging and Antibacterial Activity Accelerates Diabetic Wound Healing.

Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO2 NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties. Here, this work designs a near-infrared (NIR) light-responsive gelatin methacryloyl (GelMA)/CeO2/polydopamine (PDA) hydrogel with antibacterial and antioxidant effects. The hydrogel exhibits a stable, efficient, and controllable photothermal conversion capacity under NIR stimulation. The hydrogel can be used to construct a local microenvironment conducive to chronic diabetic wound healing. Significant antibacterial effects of the NIR-responsive GelMA/CeO2/PDA hydrogel on both Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) are demonstrated by counting colony-forming units (CFUs) and in bacterial live/dead staining experiments. The strong antioxidant activity of hydrogels is demonstrated by measuring the level of reactive oxygen species (ROS). The effect of the NIR-responsive GelMA/CeO2/PDA hydrogel in terms of promoting diabetic wound healing is validated in full-thickness cutaneous wounds of diabetic rat models. Additionally, this work describes the mechanism by which the NIR-responsive GelMA/CeO2/PDA hydrogel promotes diabetic wound healing; the hydrogel inhibits the interleukin (IL)-17 signaling pathway. This NIR-responsive, multifunctional hydrogel dressing provides a targeted approach to diabetic wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信