{"title":"协同微流体和等离子体:进展、应用和未来方向。","authors":"C Escobedo, A G Brolo","doi":"10.1039/d4lc00572d","DOIUrl":null,"url":null,"abstract":"<p><p>In the past decade, interest in nanoplasmonic structures has experienced significant growth, owing to rapid advancements in materials science and the evolution of novel nanofabrication techniques. The activities in the area are not only leading to remarkable progress in specific applications in photonics, but also permeating to and synergizing with other fields. This review delves into the symbiosis between nanoplasmonics and microfluidics, elucidating fundamental principles on nanophotonics centered on surface plasmon-polaritons, and key achievements arising from the intricate interplay between light and fluids at small scales. This review underscores the unparalleled capabilities of subwavelength plasmonic structures to manipulate light beyond the diffraction limit, concurrently serving as fluidic entities or synergistically combining with micro- and nanofluidic structures. Noteworthy phenomena, techniques and applications arising from this synergy are explored, including the manipulation of fluids at nanoscopic dimensions, the trapping of individual nanoscopic entities like molecules or nanoparticles, and the harnessing of light within a fluidic environment. Additionally, it discusses light-driven fabrication methodologies for microfluidic platforms and, contrariwise, the use of microfluidics in the fabrication of plasmonic nanostructures. Pondering future prospects, this review offers insights into potential future developments, particularly focusing on the integration of two-dimensional materials endowed with exceptional optical, structural and electrical properties, such as goldene and borophene, which enable higher carrier densities and higher plasmonic frequencies. Such advancements could catalyze innovations in diverse applications, including energy harvesting, advanced photothermal cancer therapies, and catalytic processes for hydrogen generation and CO<sub>2</sub> conversion.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergizing microfluidics and plasmonics: advances, applications, and future directions.\",\"authors\":\"C Escobedo, A G Brolo\",\"doi\":\"10.1039/d4lc00572d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the past decade, interest in nanoplasmonic structures has experienced significant growth, owing to rapid advancements in materials science and the evolution of novel nanofabrication techniques. The activities in the area are not only leading to remarkable progress in specific applications in photonics, but also permeating to and synergizing with other fields. This review delves into the symbiosis between nanoplasmonics and microfluidics, elucidating fundamental principles on nanophotonics centered on surface plasmon-polaritons, and key achievements arising from the intricate interplay between light and fluids at small scales. This review underscores the unparalleled capabilities of subwavelength plasmonic structures to manipulate light beyond the diffraction limit, concurrently serving as fluidic entities or synergistically combining with micro- and nanofluidic structures. Noteworthy phenomena, techniques and applications arising from this synergy are explored, including the manipulation of fluids at nanoscopic dimensions, the trapping of individual nanoscopic entities like molecules or nanoparticles, and the harnessing of light within a fluidic environment. Additionally, it discusses light-driven fabrication methodologies for microfluidic platforms and, contrariwise, the use of microfluidics in the fabrication of plasmonic nanostructures. Pondering future prospects, this review offers insights into potential future developments, particularly focusing on the integration of two-dimensional materials endowed with exceptional optical, structural and electrical properties, such as goldene and borophene, which enable higher carrier densities and higher plasmonic frequencies. Such advancements could catalyze innovations in diverse applications, including energy harvesting, advanced photothermal cancer therapies, and catalytic processes for hydrogen generation and CO<sub>2</sub> conversion.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00572d\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00572d","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Synergizing microfluidics and plasmonics: advances, applications, and future directions.
In the past decade, interest in nanoplasmonic structures has experienced significant growth, owing to rapid advancements in materials science and the evolution of novel nanofabrication techniques. The activities in the area are not only leading to remarkable progress in specific applications in photonics, but also permeating to and synergizing with other fields. This review delves into the symbiosis between nanoplasmonics and microfluidics, elucidating fundamental principles on nanophotonics centered on surface plasmon-polaritons, and key achievements arising from the intricate interplay between light and fluids at small scales. This review underscores the unparalleled capabilities of subwavelength plasmonic structures to manipulate light beyond the diffraction limit, concurrently serving as fluidic entities or synergistically combining with micro- and nanofluidic structures. Noteworthy phenomena, techniques and applications arising from this synergy are explored, including the manipulation of fluids at nanoscopic dimensions, the trapping of individual nanoscopic entities like molecules or nanoparticles, and the harnessing of light within a fluidic environment. Additionally, it discusses light-driven fabrication methodologies for microfluidic platforms and, contrariwise, the use of microfluidics in the fabrication of plasmonic nanostructures. Pondering future prospects, this review offers insights into potential future developments, particularly focusing on the integration of two-dimensional materials endowed with exceptional optical, structural and electrical properties, such as goldene and borophene, which enable higher carrier densities and higher plasmonic frequencies. Such advancements could catalyze innovations in diverse applications, including energy harvesting, advanced photothermal cancer therapies, and catalytic processes for hydrogen generation and CO2 conversion.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.