{"title":"用于即时检测的离心微流体技术的最新进展。","authors":"Huijuan Yuan, Zeyu Miao, Chao Wan, Jingjing Wang, Jinzhi Liu, Yiwei Li, Yujin Xiao, Peng Chen, Bi-Feng Liu","doi":"10.1039/d4lc00779d","DOIUrl":null,"url":null,"abstract":"<p><p>Point-of-care testing (POCT) holds significant importance in the field of infectious disease prevention and control, as well as personalized precision medicine. The emerging microfluidics, capable of minimal reagent consumption, integration, and a high degree of automation, play a pivotal role in POCT. Centrifugal microfluidics, also termed lab-on-a-disc (LOAD), is a significant subfield of microfluidics that integrates crucial analytical steps onto a single chip, thereby optimizing the process and enabling high-throughput, automated analysis. By utilizing rotational mechanics to precisely control fluid dynamics without external pressure sources, centrifugal microfluidics facilitates swift operations ideal for urgent medical and field settings. This review provides a comprehensive overview of the latest advancements in centrifugal microfluidics for POCT, covering both theoretical principles and practical applications. We begin by introducing the fundamental operational principles, fluidic control mechanisms, and signal output detection methods. Subsequently, we delve into the typical applications of centrifugal microfluidic platforms in immunoassays, nucleic acid testing, antimicrobial susceptibility testing, and other tests. We also discuss the strengths and potential limitations of centrifugal microfluidic platforms, underscoring their transformative impact on traditional conventional procedures and their significant role in diagnostic practices.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in centrifugal microfluidics for point-of-care testing.\",\"authors\":\"Huijuan Yuan, Zeyu Miao, Chao Wan, Jingjing Wang, Jinzhi Liu, Yiwei Li, Yujin Xiao, Peng Chen, Bi-Feng Liu\",\"doi\":\"10.1039/d4lc00779d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Point-of-care testing (POCT) holds significant importance in the field of infectious disease prevention and control, as well as personalized precision medicine. The emerging microfluidics, capable of minimal reagent consumption, integration, and a high degree of automation, play a pivotal role in POCT. Centrifugal microfluidics, also termed lab-on-a-disc (LOAD), is a significant subfield of microfluidics that integrates crucial analytical steps onto a single chip, thereby optimizing the process and enabling high-throughput, automated analysis. By utilizing rotational mechanics to precisely control fluid dynamics without external pressure sources, centrifugal microfluidics facilitates swift operations ideal for urgent medical and field settings. This review provides a comprehensive overview of the latest advancements in centrifugal microfluidics for POCT, covering both theoretical principles and practical applications. We begin by introducing the fundamental operational principles, fluidic control mechanisms, and signal output detection methods. Subsequently, we delve into the typical applications of centrifugal microfluidic platforms in immunoassays, nucleic acid testing, antimicrobial susceptibility testing, and other tests. We also discuss the strengths and potential limitations of centrifugal microfluidic platforms, underscoring their transformative impact on traditional conventional procedures and their significant role in diagnostic practices.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00779d\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00779d","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Recent advances in centrifugal microfluidics for point-of-care testing.
Point-of-care testing (POCT) holds significant importance in the field of infectious disease prevention and control, as well as personalized precision medicine. The emerging microfluidics, capable of minimal reagent consumption, integration, and a high degree of automation, play a pivotal role in POCT. Centrifugal microfluidics, also termed lab-on-a-disc (LOAD), is a significant subfield of microfluidics that integrates crucial analytical steps onto a single chip, thereby optimizing the process and enabling high-throughput, automated analysis. By utilizing rotational mechanics to precisely control fluid dynamics without external pressure sources, centrifugal microfluidics facilitates swift operations ideal for urgent medical and field settings. This review provides a comprehensive overview of the latest advancements in centrifugal microfluidics for POCT, covering both theoretical principles and practical applications. We begin by introducing the fundamental operational principles, fluidic control mechanisms, and signal output detection methods. Subsequently, we delve into the typical applications of centrifugal microfluidic platforms in immunoassays, nucleic acid testing, antimicrobial susceptibility testing, and other tests. We also discuss the strengths and potential limitations of centrifugal microfluidic platforms, underscoring their transformative impact on traditional conventional procedures and their significant role in diagnostic practices.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.