光促进一氧化氮触发开启光动力疗法用于精确抗肿瘤应用。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yiliang Qin, Hanyi Gao, Yuting Yin, Jiayi Li, Xia He, Meng Gao, Liying Sun, Yi Yuan, Ying Tian, Yizhao Zhou, Zebing Zeng, Xiaodong Zhang, Rong Hu
{"title":"光促进一氧化氮触发开启光动力疗法用于精确抗肿瘤应用。","authors":"Yiliang Qin, Hanyi Gao, Yuting Yin, Jiayi Li, Xia He, Meng Gao, Liying Sun, Yi Yuan, Ying Tian, Yizhao Zhou, Zebing Zeng, Xiaodong Zhang, Rong Hu","doi":"10.1002/adhm.202404265","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a powerful strategy for tumor therapy with noninvasiveness and desirable efficacy. However, the phototoxicity of photosensitizer after the post-PDT is the major obstacle limiting the clinic applications. Herein, a nitric oxide (NO)-activatable photosensitizer is reported with turn-on PDT behavior and endoplasmic reticulum (ER) targeting ability for precise tumor therapy. Four o-thiophenediamine derivatives with reaction-tunable donor/acceptor push-pull electronic effect are established, and the systematic structure and property relationship observation reveals the following features: 1) the reactivity against NO can be improved by enhancing the electron density and further facilitated upon photo-irradiation. 2) the reactivity with NO enables the improved intramolecular charge transfer process with the evoking of photosensitizing effect. 3) only o-thiophenediamine derivative with ER enrichment behavior exhibited cancer cell ablation effect compared to photosensitizers localized in lysosome and lipid droplet. Thus, the efficient inhibition of cancer cells both in vitro and in vivo is realized based on the photo-controlled PDT strategy. This work provides more insights into developing promising activatable photosensitizers for advanced therapy based on tumor microenvironment trigger.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404265"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-Facilitated Nitric Oxide-Triggered Turn-on Photodynamic Therapy for Precise Antitumor Application.\",\"authors\":\"Yiliang Qin, Hanyi Gao, Yuting Yin, Jiayi Li, Xia He, Meng Gao, Liying Sun, Yi Yuan, Ying Tian, Yizhao Zhou, Zebing Zeng, Xiaodong Zhang, Rong Hu\",\"doi\":\"10.1002/adhm.202404265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) is a powerful strategy for tumor therapy with noninvasiveness and desirable efficacy. However, the phototoxicity of photosensitizer after the post-PDT is the major obstacle limiting the clinic applications. Herein, a nitric oxide (NO)-activatable photosensitizer is reported with turn-on PDT behavior and endoplasmic reticulum (ER) targeting ability for precise tumor therapy. Four o-thiophenediamine derivatives with reaction-tunable donor/acceptor push-pull electronic effect are established, and the systematic structure and property relationship observation reveals the following features: 1) the reactivity against NO can be improved by enhancing the electron density and further facilitated upon photo-irradiation. 2) the reactivity with NO enables the improved intramolecular charge transfer process with the evoking of photosensitizing effect. 3) only o-thiophenediamine derivative with ER enrichment behavior exhibited cancer cell ablation effect compared to photosensitizers localized in lysosome and lipid droplet. Thus, the efficient inhibition of cancer cells both in vitro and in vivo is realized based on the photo-controlled PDT strategy. This work provides more insights into developing promising activatable photosensitizers for advanced therapy based on tumor microenvironment trigger.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2404265\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202404265\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404265","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

光动力疗法(PDT)是一种无创、疗效理想的肿瘤治疗方法。然而,光敏剂在pdt后的光毒性是限制其临床应用的主要障碍。本文报道了一种一氧化氮(NO)活化光敏剂,具有开启PDT行为和内质网(ER)靶向能力,可用于精确的肿瘤治疗。建立了4种具有反应可调的给体/受体推拉电子效应的邻噻吩二胺衍生物,通过系统的结构与性质关系观察发现:1)提高电子密度可以提高对NO的反应性,并在光照射下进一步增强。2)与NO的反应性改善了分子内电荷转移过程,引起光敏效应。3)与定位于溶酶体和脂滴的光敏剂相比,只有具有ER富集行为的邻噻吩二胺衍生物具有癌细胞消融作用。因此,基于光控PDT策略实现了体外和体内对癌细胞的有效抑制。这项工作为开发基于肿瘤微环境触发的有前途的光敏剂进行高级治疗提供了更多的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photo-Facilitated Nitric Oxide-Triggered Turn-on Photodynamic Therapy for Precise Antitumor Application.

Photodynamic therapy (PDT) is a powerful strategy for tumor therapy with noninvasiveness and desirable efficacy. However, the phototoxicity of photosensitizer after the post-PDT is the major obstacle limiting the clinic applications. Herein, a nitric oxide (NO)-activatable photosensitizer is reported with turn-on PDT behavior and endoplasmic reticulum (ER) targeting ability for precise tumor therapy. Four o-thiophenediamine derivatives with reaction-tunable donor/acceptor push-pull electronic effect are established, and the systematic structure and property relationship observation reveals the following features: 1) the reactivity against NO can be improved by enhancing the electron density and further facilitated upon photo-irradiation. 2) the reactivity with NO enables the improved intramolecular charge transfer process with the evoking of photosensitizing effect. 3) only o-thiophenediamine derivative with ER enrichment behavior exhibited cancer cell ablation effect compared to photosensitizers localized in lysosome and lipid droplet. Thus, the efficient inhibition of cancer cells both in vitro and in vivo is realized based on the photo-controlled PDT strategy. This work provides more insights into developing promising activatable photosensitizers for advanced therapy based on tumor microenvironment trigger.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信