三阴性乳腺癌的分子异质性和MYC失调:基因组学进展和治疗意义。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-01-01 Epub Date: 2025-01-05 DOI:10.1007/s13205-024-04195-0
Priya, Arun Kumar, Dhruv Kumar
{"title":"三阴性乳腺癌的分子异质性和MYC失调:基因组学进展和治疗意义。","authors":"Priya, Arun Kumar, Dhruv Kumar","doi":"10.1007/s13205-024-04195-0","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"33"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700964/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications.\",\"authors\":\"Priya, Arun Kumar, Dhruv Kumar\",\"doi\":\"10.1007/s13205-024-04195-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 1\",\"pages\":\"33\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700964/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04195-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04195-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三阴性乳腺癌(TNBC)具有多种分子特征,这些特征已被广泛研究。MYC在调节代谢、分化、增殖、细胞生长和凋亡中起关键作用。MYC的失调与不良预后有关,并有助于乳腺癌的发生和进展。TNBC的一个特别有趣的方面是它与BRCA1突变携带者(尤其是年轻女性)肿瘤的关联。MYC也可能导致对辅助治疗的抵抗。对于TNBC,靶向myc调节的途径与其他致癌途径的抑制剂联合提供了一种有希望的治疗方法。几种信号通路调节TNBC,靶向这些通路可能导致有效的乳腺癌治疗策略。基因组工具的进步,如CRISPR-Cas9、下一代测序和全外显子组测序,正在彻底改变乳腺癌的诊断。这些技术显著增强了我们对MYC肿瘤发生的理解,特别是通过CRISPR-Cas9和NGS。以MYC及其合作伙伴MAX为目标可以为TNBC提供有价值的见解。此外,针对myc驱动的信号机制及其与其他致癌途径(包括PI3K/AKT/mTOR和Wnt/β-catenin)的相互作用的治疗潜力越来越被认识到。下一代测序和CRISPR-Cas9代表了基因组工具的重大突破,为探索MYC在TNBC中的作用和促进个性化治疗计划的发展提供了新的机会。本文综述了三阴癌患者个性化治疗策略的未来临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications.

Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信