Johannes Dornhof, Jochen Kieninger, Stefan J Rupitsch, Andreas Weltin
{"title":"用于细胞代谢的微传感器系统-从2D培养到芯片上的器官(2019-2024)。","authors":"Johannes Dornhof, Jochen Kieninger, Stefan J Rupitsch, Andreas Weltin","doi":"10.1039/d4lc00437j","DOIUrl":null,"url":null,"abstract":"<p><p>Cell cultures, organs-on-chip and microphysiological systems become increasingly relevant as <i>in vitro</i> models, <i>e.g.</i>, in drug development, disease modelling, toxicology or cancer research. It has been underlined repeatedly that culture conditions and metabolic cues have a strong or even essential influence on the reproducibility and validity of such experiments but are often not appropriately measured or controlled. Here we review microsensor systems for cell metabolism for the continuous measurement of culture conditions in microfluidic and lab-on-chip platforms. We identify building blocks, features and essential advantages to underline the relevance of these systems and to derive appropriate requirements for development and practical use. We discuss different formats and geometries of cell culture, microfluidics and the resulting consequences for sensor placement, as the prerequisite for understanding the various approaches and classification of the systems. The major chemical and biosensors based on electrochemical and optical principles are discussed for general understanding and to contextualize current developments. We then review selected recent sensor systems with real-world implementations of sensing in cell cultures and organs-on-chip, employing a helpful characterization. That includes formats and cell models, microfluidic systems and sensor types applied in static and dynamic monitoring of 2D and 3D cell cultures, as well as single spheroids. We discuss notable advances, particularly with respect to sensor performance and the demonstration of long-term continuous measurements. We outline current approaches to system fabrication technologies, material choice, and interfacing, and comment on recent trends. Finally, we conclude with critical remarks on the current state of sensors in cell culture monitoring and identify avenues for future improvements for both developers and users of such systems, which will lead to better and more predictive <i>in vitro</i> models.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microsensor systems for cell metabolism - from 2D culture to organ-on-chip (2019-2024).\",\"authors\":\"Johannes Dornhof, Jochen Kieninger, Stefan J Rupitsch, Andreas Weltin\",\"doi\":\"10.1039/d4lc00437j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell cultures, organs-on-chip and microphysiological systems become increasingly relevant as <i>in vitro</i> models, <i>e.g.</i>, in drug development, disease modelling, toxicology or cancer research. It has been underlined repeatedly that culture conditions and metabolic cues have a strong or even essential influence on the reproducibility and validity of such experiments but are often not appropriately measured or controlled. Here we review microsensor systems for cell metabolism for the continuous measurement of culture conditions in microfluidic and lab-on-chip platforms. We identify building blocks, features and essential advantages to underline the relevance of these systems and to derive appropriate requirements for development and practical use. We discuss different formats and geometries of cell culture, microfluidics and the resulting consequences for sensor placement, as the prerequisite for understanding the various approaches and classification of the systems. The major chemical and biosensors based on electrochemical and optical principles are discussed for general understanding and to contextualize current developments. We then review selected recent sensor systems with real-world implementations of sensing in cell cultures and organs-on-chip, employing a helpful characterization. That includes formats and cell models, microfluidic systems and sensor types applied in static and dynamic monitoring of 2D and 3D cell cultures, as well as single spheroids. We discuss notable advances, particularly with respect to sensor performance and the demonstration of long-term continuous measurements. We outline current approaches to system fabrication technologies, material choice, and interfacing, and comment on recent trends. Finally, we conclude with critical remarks on the current state of sensors in cell culture monitoring and identify avenues for future improvements for both developers and users of such systems, which will lead to better and more predictive <i>in vitro</i> models.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00437j\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00437j","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Microsensor systems for cell metabolism - from 2D culture to organ-on-chip (2019-2024).
Cell cultures, organs-on-chip and microphysiological systems become increasingly relevant as in vitro models, e.g., in drug development, disease modelling, toxicology or cancer research. It has been underlined repeatedly that culture conditions and metabolic cues have a strong or even essential influence on the reproducibility and validity of such experiments but are often not appropriately measured or controlled. Here we review microsensor systems for cell metabolism for the continuous measurement of culture conditions in microfluidic and lab-on-chip platforms. We identify building blocks, features and essential advantages to underline the relevance of these systems and to derive appropriate requirements for development and practical use. We discuss different formats and geometries of cell culture, microfluidics and the resulting consequences for sensor placement, as the prerequisite for understanding the various approaches and classification of the systems. The major chemical and biosensors based on electrochemical and optical principles are discussed for general understanding and to contextualize current developments. We then review selected recent sensor systems with real-world implementations of sensing in cell cultures and organs-on-chip, employing a helpful characterization. That includes formats and cell models, microfluidic systems and sensor types applied in static and dynamic monitoring of 2D and 3D cell cultures, as well as single spheroids. We discuss notable advances, particularly with respect to sensor performance and the demonstration of long-term continuous measurements. We outline current approaches to system fabrication technologies, material choice, and interfacing, and comment on recent trends. Finally, we conclude with critical remarks on the current state of sensors in cell culture monitoring and identify avenues for future improvements for both developers and users of such systems, which will lead to better and more predictive in vitro models.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.