不同分子翻滚条件下碱金属离子的四极-中心-过渡23Na, 39K, 87Rb核磁共振研究:一个处理涉及四极核的化学交换的简单模型。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-01-23 Epub Date: 2025-01-09 DOI:10.1021/acs.jpca.4c07473
Ziyao Peng, Gang Wu
{"title":"不同分子翻滚条件下碱金属离子的四极-中心-过渡23Na, 39K, 87Rb核磁共振研究:一个处理涉及四极核的化学交换的简单模型。","authors":"Ziyao Peng, Gang Wu","doi":"10.1021/acs.jpca.4c07473","DOIUrl":null,"url":null,"abstract":"<p><p>We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive <sup>23</sup>Na (<i>I</i> = 3/2), <sup>39</sup>K (<i>I</i> = 3/2), and <sup>87</sup>Rb (<i>I</i> = 3/2) NMR results from alkali metal ions (Na<sup>+</sup>, K<sup>+</sup>, and Rb<sup>+</sup>) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal. In the slow-motion regime, although the NMR signal from quadrupolar nuclei should in principle exhibit a multi-Lorentzian line shape, only the quadrupole central transition (QCT) is often detectable in practice. In all the cases studied in this work, we found that alkali metal ions undergo fast exchange between free and bound states. Using the new theoretical method, we were able to interpret the experimental transverse relaxation data (i.e., line widths) obtained for <sup>23</sup>Na, <sup>39</sup>K, and <sup>87</sup>Rb NMR signals including QCT signals over a large temperature range and extract information about ion-binding dynamics in different chemical environments. This work fills a gap in the literature where a unified approach for treating NMR transverse relaxation data for quadrupolar nuclei over the entire range of motion has been lacking. Our results suggest that the new approach is applicable in the study of alkali metal ion binding to biological macromolecules.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"803-813"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadrupole-Central-Transition <sup>23</sup>Na, <sup>39</sup>K, <sup>87</sup>Rb NMR Studies of Alkali Metal Ions under Different Molecular Tumbling Conditions: A Simple Model to Treat Chemical Exchange Involving Quadrupolar Nuclei.\",\"authors\":\"Ziyao Peng, Gang Wu\",\"doi\":\"10.1021/acs.jpca.4c07473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive <sup>23</sup>Na (<i>I</i> = 3/2), <sup>39</sup>K (<i>I</i> = 3/2), and <sup>87</sup>Rb (<i>I</i> = 3/2) NMR results from alkali metal ions (Na<sup>+</sup>, K<sup>+</sup>, and Rb<sup>+</sup>) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal. In the slow-motion regime, although the NMR signal from quadrupolar nuclei should in principle exhibit a multi-Lorentzian line shape, only the quadrupole central transition (QCT) is often detectable in practice. In all the cases studied in this work, we found that alkali metal ions undergo fast exchange between free and bound states. Using the new theoretical method, we were able to interpret the experimental transverse relaxation data (i.e., line widths) obtained for <sup>23</sup>Na, <sup>39</sup>K, and <sup>87</sup>Rb NMR signals including QCT signals over a large temperature range and extract information about ion-binding dynamics in different chemical environments. This work fills a gap in the literature where a unified approach for treating NMR transverse relaxation data for quadrupolar nuclei over the entire range of motion has been lacking. Our results suggest that the new approach is applicable in the study of alkali metal ion binding to biological macromolecules.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"803-813\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c07473\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07473","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种新的核磁共振方法,用于处理溶液中涉及半整数四极核的二元化学交换。在广泛的分子翻滚条件下,对溶液中碱金属离子(Na+、K+和Rb+)的23Na (I = 3/2)、39K (I = 3/2)和87Rb (I = 3/2)核磁共振结果进行了实验验证。在快速运动极限下,特定四极核的所有允许的单量子核磁共振跃迁都是简并的,产生一个洛伦兹信号。在慢动作状态下,尽管来自四极核的核磁共振信号原则上应该表现为多洛伦兹线形状,但在实践中通常只能检测到四极中心跃迁(QCT)。在本研究的所有案例中,我们发现碱金属离子在自由态和束缚态之间进行快速交换。利用新的理论方法,我们能够在大温度范围内解释23Na、39K和87Rb核磁共振信号(包括QCT信号)的实验横向弛豫数据(即线宽),并提取不同化学环境下离子结合动力学的信息。这项工作填补了文献中的一个空白,即在整个运动范围内处理四极核磁共振横向弛豫数据的统一方法一直缺乏。结果表明,该方法可应用于碱金属离子与生物大分子结合的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadrupole-Central-Transition 23Na, 39K, 87Rb NMR Studies of Alkali Metal Ions under Different Molecular Tumbling Conditions: A Simple Model to Treat Chemical Exchange Involving Quadrupolar Nuclei.

We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive 23Na (I = 3/2), 39K (I = 3/2), and 87Rb (I = 3/2) NMR results from alkali metal ions (Na+, K+, and Rb+) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal. In the slow-motion regime, although the NMR signal from quadrupolar nuclei should in principle exhibit a multi-Lorentzian line shape, only the quadrupole central transition (QCT) is often detectable in practice. In all the cases studied in this work, we found that alkali metal ions undergo fast exchange between free and bound states. Using the new theoretical method, we were able to interpret the experimental transverse relaxation data (i.e., line widths) obtained for 23Na, 39K, and 87Rb NMR signals including QCT signals over a large temperature range and extract information about ion-binding dynamics in different chemical environments. This work fills a gap in the literature where a unified approach for treating NMR transverse relaxation data for quadrupolar nuclei over the entire range of motion has been lacking. Our results suggest that the new approach is applicable in the study of alkali metal ion binding to biological macromolecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信