Derick N Rosario-Berríos, Amanda Pang, Leening P Liu, Portia S N Maidment, Johoon Kim, Seokyoung Yoon, Lenitza M Nieves, Katherine J Mossburg, Andrew Adezio, Peter B Noël, Elizabeth M Lennon, David P Cormode
{"title":"纳米金造影剂粒径对胃肠道及炎症性肠病CT成像的影响","authors":"Derick N Rosario-Berríos, Amanda Pang, Leening P Liu, Portia S N Maidment, Johoon Kim, Seokyoung Yoon, Lenitza M Nieves, Katherine J Mossburg, Andrew Adezio, Peter B Noël, Elizabeth M Lennon, David P Cormode","doi":"10.1021/acs.bioconjchem.4c00507","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). CT imaging with contrast agents is commonly used for visualizing the gastrointestinal (GI) tract in UC patients. Contrast agents that provide enhanced imaging performance are highly valuable in this field. Recent studies have made significant progress in developing better contrast agents for imaging the gastrointestinal tract using nanoparticles. However, the impact of nanoparticle size on this application remains unexplored. Gold nanoparticles (AuNPs) serve as an ideal model to investigate the effect of nanoparticle size on imaging of the gastrointestinal tract due to their controllable synthesis across a broad size range. In this study, we synthesized AuNPs with core sizes ranging from 5 to 75 nm to examine the effect of the size in this setting. AuNPs were coated with poly(ethylene glycol) (PEG) to enhance stability and biocompatibility. In vitro tests show that gold nanoparticles are cytocompatible with macrophage cells (∼100% cell viability) and remain stable under acidic conditions, with no significant size changes over time. Phantom imaging studies using a clinical CT scanner indicated that there was no effect of nanoparticle size on CT contrast production, as previously demonstrated. <i>In vivo</i> imaging using a mouse model of acute colitis revealed a strong contrast generation throughout the GI tract for all agents tested. For the most part, <i>in vivo</i> contrast was independent of AuNP size, although AuNP outperformed iopamidol (a clinically approved control agent). In addition, differences in attenuation trends were observed between healthy and colitis mice. We also observed almost complete clearance at 24 h of all formulations tested (less than 0.7% ID/g was retained), supporting their value as a model platform for studying nanoparticle behavior in imaging. In conclusion, this study highlights the potential of nanoparticles as effective contrast agents for CT imaging of the gastrointestinal tract (GIT) in the UC. Further systemic research is needed to explore contrast agents that can specifically image disease processes in this disease setting.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of the Size of Gold Nanoparticle Contrast Agents on CT Imaging of the Gastrointestinal Tract and Inflammatory Bowel Disease.\",\"authors\":\"Derick N Rosario-Berríos, Amanda Pang, Leening P Liu, Portia S N Maidment, Johoon Kim, Seokyoung Yoon, Lenitza M Nieves, Katherine J Mossburg, Andrew Adezio, Peter B Noël, Elizabeth M Lennon, David P Cormode\",\"doi\":\"10.1021/acs.bioconjchem.4c00507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). CT imaging with contrast agents is commonly used for visualizing the gastrointestinal (GI) tract in UC patients. Contrast agents that provide enhanced imaging performance are highly valuable in this field. Recent studies have made significant progress in developing better contrast agents for imaging the gastrointestinal tract using nanoparticles. However, the impact of nanoparticle size on this application remains unexplored. Gold nanoparticles (AuNPs) serve as an ideal model to investigate the effect of nanoparticle size on imaging of the gastrointestinal tract due to their controllable synthesis across a broad size range. In this study, we synthesized AuNPs with core sizes ranging from 5 to 75 nm to examine the effect of the size in this setting. AuNPs were coated with poly(ethylene glycol) (PEG) to enhance stability and biocompatibility. In vitro tests show that gold nanoparticles are cytocompatible with macrophage cells (∼100% cell viability) and remain stable under acidic conditions, with no significant size changes over time. Phantom imaging studies using a clinical CT scanner indicated that there was no effect of nanoparticle size on CT contrast production, as previously demonstrated. <i>In vivo</i> imaging using a mouse model of acute colitis revealed a strong contrast generation throughout the GI tract for all agents tested. For the most part, <i>in vivo</i> contrast was independent of AuNP size, although AuNP outperformed iopamidol (a clinically approved control agent). In addition, differences in attenuation trends were observed between healthy and colitis mice. We also observed almost complete clearance at 24 h of all formulations tested (less than 0.7% ID/g was retained), supporting their value as a model platform for studying nanoparticle behavior in imaging. In conclusion, this study highlights the potential of nanoparticles as effective contrast agents for CT imaging of the gastrointestinal tract (GIT) in the UC. Further systemic research is needed to explore contrast agents that can specifically image disease processes in this disease setting.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00507\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00507","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The Effect of the Size of Gold Nanoparticle Contrast Agents on CT Imaging of the Gastrointestinal Tract and Inflammatory Bowel Disease.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). CT imaging with contrast agents is commonly used for visualizing the gastrointestinal (GI) tract in UC patients. Contrast agents that provide enhanced imaging performance are highly valuable in this field. Recent studies have made significant progress in developing better contrast agents for imaging the gastrointestinal tract using nanoparticles. However, the impact of nanoparticle size on this application remains unexplored. Gold nanoparticles (AuNPs) serve as an ideal model to investigate the effect of nanoparticle size on imaging of the gastrointestinal tract due to their controllable synthesis across a broad size range. In this study, we synthesized AuNPs with core sizes ranging from 5 to 75 nm to examine the effect of the size in this setting. AuNPs were coated with poly(ethylene glycol) (PEG) to enhance stability and biocompatibility. In vitro tests show that gold nanoparticles are cytocompatible with macrophage cells (∼100% cell viability) and remain stable under acidic conditions, with no significant size changes over time. Phantom imaging studies using a clinical CT scanner indicated that there was no effect of nanoparticle size on CT contrast production, as previously demonstrated. In vivo imaging using a mouse model of acute colitis revealed a strong contrast generation throughout the GI tract for all agents tested. For the most part, in vivo contrast was independent of AuNP size, although AuNP outperformed iopamidol (a clinically approved control agent). In addition, differences in attenuation trends were observed between healthy and colitis mice. We also observed almost complete clearance at 24 h of all formulations tested (less than 0.7% ID/g was retained), supporting their value as a model platform for studying nanoparticle behavior in imaging. In conclusion, this study highlights the potential of nanoparticles as effective contrast agents for CT imaging of the gastrointestinal tract (GIT) in the UC. Further systemic research is needed to explore contrast agents that can specifically image disease processes in this disease setting.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.