{"title":"天然多糖类高分子材料作为生物模板用于金属/金属氧化物纳米复合粒子的合成及其传感和催化应用","authors":"Jagabandhu Ray, Barun Mondal, Rakesh Kumar Saren, Tridib Tripathy","doi":"10.1007/s12034-024-03390-2","DOIUrl":null,"url":null,"abstract":"<div><p>Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg<sup>2+</sup>, Cd<sup>2+</sup>, Th<sup>4+</sup>, Zn<sup>2+</sup>, Pb<sup>2+</sup>, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural polysaccharide-based polymeric materials used as bio-templates for the synthesis of metal/metal oxide nanocomposite particles and their sensing and catalytic applications\",\"authors\":\"Jagabandhu Ray, Barun Mondal, Rakesh Kumar Saren, Tridib Tripathy\",\"doi\":\"10.1007/s12034-024-03390-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg<sup>2+</sup>, Cd<sup>2+</sup>, Th<sup>4+</sup>, Zn<sup>2+</sup>, Pb<sup>2+</sup>, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03390-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03390-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Natural polysaccharide-based polymeric materials used as bio-templates for the synthesis of metal/metal oxide nanocomposite particles and their sensing and catalytic applications
Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg2+, Cd2+, Th4+, Zn2+, Pb2+, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.