天然多糖类高分子材料作为生物模板用于金属/金属氧化物纳米复合粒子的合成及其传感和催化应用

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jagabandhu Ray, Barun Mondal, Rakesh Kumar Saren, Tridib Tripathy
{"title":"天然多糖类高分子材料作为生物模板用于金属/金属氧化物纳米复合粒子的合成及其传感和催化应用","authors":"Jagabandhu Ray,&nbsp;Barun Mondal,&nbsp;Rakesh Kumar Saren,&nbsp;Tridib Tripathy","doi":"10.1007/s12034-024-03390-2","DOIUrl":null,"url":null,"abstract":"<div><p>Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg<sup>2+</sup>, Cd<sup>2+</sup>, Th<sup>4+</sup>, Zn<sup>2+</sup>, Pb<sup>2+</sup>, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural polysaccharide-based polymeric materials used as bio-templates for the synthesis of metal/metal oxide nanocomposite particles and their sensing and catalytic applications\",\"authors\":\"Jagabandhu Ray,&nbsp;Barun Mondal,&nbsp;Rakesh Kumar Saren,&nbsp;Tridib Tripathy\",\"doi\":\"10.1007/s12034-024-03390-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg<sup>2+</sup>, Cd<sup>2+</sup>, Th<sup>4+</sup>, Zn<sup>2+</sup>, Pb<sup>2+</sup>, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03390-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03390-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有害重金属离子和有机化合物的水污染对水生物种和人类健康造成环境损害。因此,发展高选择性、经济、快速和有效的分析工具来去除和检测水环境中的有毒重金属离子和有机化合物是一个具有挑战性的目标。金属离子和有机化合物的电化学检测是一种非常有用和有效的方法,其中使用金属纳米复合粒子修饰电极。高孔隙率、低电荷转移电阻和大电活性面积的材料是电极修饰的理想材料,以作为高效的电化学传感器。研究表明,天然多糖基接枝共聚物与丙烯酸单体可以有效地用作“生物模板”,用于制备用于传感和催化应用的单金属和双金属/金属氧化物复合纳米颗粒。这是因为基于多糖的接枝共聚物在本质上是生态友好的,并且具有作为还原剂和稳定剂的潜力。生物模板基金属/金属氧化物纳米复合材料已成功地用于重金属离子(如Hg2+、Cd2+、Th4+、Zn2+、Pb2+等)和有毒酚类化合物的电化学传感,并在偶氮染料降解和对硝基苯酚还原中显示出高效的催化应用。所研制的电化学传感器对实际水样中有毒重金属离子的检测具有选择性、灵敏度和有效性。本文综述了金属/金属氧化物纳米复合粒子(单金属和双金属)在有毒重金属离子电化学传感和催化应用方面的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Natural polysaccharide-based polymeric materials used as bio-templates for the synthesis of metal/metal oxide nanocomposite particles and their sensing and catalytic applications

Natural polysaccharide-based polymeric materials used as bio-templates for the synthesis of metal/metal oxide nanocomposite particles and their sensing and catalytic applications

Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg2+, Cd2+, Th4+, Zn2+, Pb2+, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信