纳米晶Ce0.75Zr0.25O2陶瓷的阻抗谱研究

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sushama Kumari, S K Sharma, Ramcharan Meena, Vijay Kumar Goel, Swati Bugalia
{"title":"纳米晶Ce0.75Zr0.25O2陶瓷的阻抗谱研究","authors":"Sushama Kumari,&nbsp;S K Sharma,&nbsp;Ramcharan Meena,&nbsp;Vijay Kumar Goel,&nbsp;Swati Bugalia","doi":"10.1007/s12034-024-03387-x","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of the grain size on the dielectric properties and electrical conductivity was studied for single-phase solid solution of the ZrO<sub>2</sub>–CeO<sub>2</sub> system with 75% CeO<sub>2</sub>. The bi-ceramic composition of ZrO<sub>2</sub>–CeO<sub>2</sub> as Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> was prepared through a solid-state reaction to synthesize single-phasic material followed by high-energy ball milling to make finer particle size. Structural properties were confirmed through advanced analytical techniques such as XRD and Raman spectroscopy. SEM confirmed large porosity with a grain size of 204 ± 3 nm, which is larger than the crystallite size of 22.64 ± 8.6 nm calculated from the XRD analysis for Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>. The dielectric measurements were performed as a function of temperature by impedance spectroscopy. The relative dielectric constant decreases on increasing frequency for all temperatures, which validates the polar nature of nanocrystalline Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> ceramic. In addition, temperature-dependent enhancement in <span>\\({\\varepsilon }_{\\text{r}}\\)</span> is more pronounced in low-frequency regions due to low-frequency dielectric dispersion phenomena. The dielectric loss also increases with increasing temperature over the frequency region from 100 Hz to 2 MHz. The electrical conductivity of nanocrystalline Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> was found to be smaller than the micron-sized sample of Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>. The present study revealed the crucial role of grain size in tuning the dielectric properties of Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> along with ac conductivity.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impedance spectroscopic study on nanocrystalline Ce0.75Zr0.25O2 ceramics\",\"authors\":\"Sushama Kumari,&nbsp;S K Sharma,&nbsp;Ramcharan Meena,&nbsp;Vijay Kumar Goel,&nbsp;Swati Bugalia\",\"doi\":\"10.1007/s12034-024-03387-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of the grain size on the dielectric properties and electrical conductivity was studied for single-phase solid solution of the ZrO<sub>2</sub>–CeO<sub>2</sub> system with 75% CeO<sub>2</sub>. The bi-ceramic composition of ZrO<sub>2</sub>–CeO<sub>2</sub> as Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> was prepared through a solid-state reaction to synthesize single-phasic material followed by high-energy ball milling to make finer particle size. Structural properties were confirmed through advanced analytical techniques such as XRD and Raman spectroscopy. SEM confirmed large porosity with a grain size of 204 ± 3 nm, which is larger than the crystallite size of 22.64 ± 8.6 nm calculated from the XRD analysis for Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>. The dielectric measurements were performed as a function of temperature by impedance spectroscopy. The relative dielectric constant decreases on increasing frequency for all temperatures, which validates the polar nature of nanocrystalline Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> ceramic. In addition, temperature-dependent enhancement in <span>\\\\({\\\\varepsilon }_{\\\\text{r}}\\\\)</span> is more pronounced in low-frequency regions due to low-frequency dielectric dispersion phenomena. The dielectric loss also increases with increasing temperature over the frequency region from 100 Hz to 2 MHz. The electrical conductivity of nanocrystalline Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> was found to be smaller than the micron-sized sample of Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>. The present study revealed the crucial role of grain size in tuning the dielectric properties of Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> along with ac conductivity.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03387-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03387-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了晶粒尺寸对ZrO2-CeO2体系单相固溶体介电性能和电导率的影响% CeO2. The bi-ceramic composition of ZrO2–CeO2 as Ce0.75Zr0.25O2 was prepared through a solid-state reaction to synthesize single-phasic material followed by high-energy ball milling to make finer particle size. Structural properties were confirmed through advanced analytical techniques such as XRD and Raman spectroscopy. SEM confirmed large porosity with a grain size of 204 ± 3 nm, which is larger than the crystallite size of 22.64 ± 8.6 nm calculated from the XRD analysis for Ce0.75Zr0.25O2. The dielectric measurements were performed as a function of temperature by impedance spectroscopy. The relative dielectric constant decreases on increasing frequency for all temperatures, which validates the polar nature of nanocrystalline Ce0.75Zr0.25O2 ceramic. In addition, temperature-dependent enhancement in \({\varepsilon }_{\text{r}}\) is more pronounced in low-frequency regions due to low-frequency dielectric dispersion phenomena. The dielectric loss also increases with increasing temperature over the frequency region from 100 Hz to 2 MHz. The electrical conductivity of nanocrystalline Ce0.75Zr0.25O2 was found to be smaller than the micron-sized sample of Ce0.75Zr0.25O2. The present study revealed the crucial role of grain size in tuning the dielectric properties of Ce0.75Zr0.25O2 along with ac conductivity.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impedance spectroscopic study on nanocrystalline Ce0.75Zr0.25O2 ceramics

The effect of the grain size on the dielectric properties and electrical conductivity was studied for single-phase solid solution of the ZrO2–CeO2 system with 75% CeO2. The bi-ceramic composition of ZrO2–CeO2 as Ce0.75Zr0.25O2 was prepared through a solid-state reaction to synthesize single-phasic material followed by high-energy ball milling to make finer particle size. Structural properties were confirmed through advanced analytical techniques such as XRD and Raman spectroscopy. SEM confirmed large porosity with a grain size of 204 ± 3 nm, which is larger than the crystallite size of 22.64 ± 8.6 nm calculated from the XRD analysis for Ce0.75Zr0.25O2. The dielectric measurements were performed as a function of temperature by impedance spectroscopy. The relative dielectric constant decreases on increasing frequency for all temperatures, which validates the polar nature of nanocrystalline Ce0.75Zr0.25O2 ceramic. In addition, temperature-dependent enhancement in \({\varepsilon }_{\text{r}}\) is more pronounced in low-frequency regions due to low-frequency dielectric dispersion phenomena. The dielectric loss also increases with increasing temperature over the frequency region from 100 Hz to 2 MHz. The electrical conductivity of nanocrystalline Ce0.75Zr0.25O2 was found to be smaller than the micron-sized sample of Ce0.75Zr0.25O2. The present study revealed the crucial role of grain size in tuning the dielectric properties of Ce0.75Zr0.25O2 along with ac conductivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信