{"title":"未来频率下车载通信用超宽带分形微带贴片天线的设计与优化","authors":"Raghavendra Karanam, Deepti Kakkar","doi":"10.1007/s10470-025-02301-7","DOIUrl":null,"url":null,"abstract":"<div><p>A new microstrip patch antenna design with a Defected Ground Structure (DGS) is described in this research for 5G V2V and V2I communication in the 25 GHz to 35 GHz frequency band. The proposed antenna improves performance and bandwidth enhancement by combining back propagation model ANN, fractal geometry, and DGS. ANN optimizes antenna size and an enhancement in bandwidth is noticed. Fractal geometry reduces antenna size and improves radiation and bandwidth through self-similarity at various scales. Additionally, this fractal-based method reduces unnecessary side lobes, enhancing performance. DGS prevent surface wave propagation, reduce cross-coupling, and boost gain. Periodic ground plane slots or patches control radiation patterns and facilitate element mutual interaction in the DGS. DGS microstrip patch antennas provide a high gain of 9 dB, a massive simulation bandwidth of 4900 MHz and measured bandwidth of 4600MHz, and a lack of mutual coupling. It’s a great 5G V2V and V2I solution for reliable communication.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"122 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of UWB fractal micro strip patch antenna for vehicular communication applications under futuristic frequencies\",\"authors\":\"Raghavendra Karanam, Deepti Kakkar\",\"doi\":\"10.1007/s10470-025-02301-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new microstrip patch antenna design with a Defected Ground Structure (DGS) is described in this research for 5G V2V and V2I communication in the 25 GHz to 35 GHz frequency band. The proposed antenna improves performance and bandwidth enhancement by combining back propagation model ANN, fractal geometry, and DGS. ANN optimizes antenna size and an enhancement in bandwidth is noticed. Fractal geometry reduces antenna size and improves radiation and bandwidth through self-similarity at various scales. Additionally, this fractal-based method reduces unnecessary side lobes, enhancing performance. DGS prevent surface wave propagation, reduce cross-coupling, and boost gain. Periodic ground plane slots or patches control radiation patterns and facilitate element mutual interaction in the DGS. DGS microstrip patch antennas provide a high gain of 9 dB, a massive simulation bandwidth of 4900 MHz and measured bandwidth of 4600MHz, and a lack of mutual coupling. It’s a great 5G V2V and V2I solution for reliable communication.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02301-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02301-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Design and optimization of UWB fractal micro strip patch antenna for vehicular communication applications under futuristic frequencies
A new microstrip patch antenna design with a Defected Ground Structure (DGS) is described in this research for 5G V2V and V2I communication in the 25 GHz to 35 GHz frequency band. The proposed antenna improves performance and bandwidth enhancement by combining back propagation model ANN, fractal geometry, and DGS. ANN optimizes antenna size and an enhancement in bandwidth is noticed. Fractal geometry reduces antenna size and improves radiation and bandwidth through self-similarity at various scales. Additionally, this fractal-based method reduces unnecessary side lobes, enhancing performance. DGS prevent surface wave propagation, reduce cross-coupling, and boost gain. Periodic ground plane slots or patches control radiation patterns and facilitate element mutual interaction in the DGS. DGS microstrip patch antennas provide a high gain of 9 dB, a massive simulation bandwidth of 4900 MHz and measured bandwidth of 4600MHz, and a lack of mutual coupling. It’s a great 5G V2V and V2I solution for reliable communication.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.