An Jintao, Li Jun, Honglin Huang, Hui Zhang, Hongwei Yang, Geng Zhang, Sainan Chen
{"title":"底辟构造对地层压力系统的影响研究——以莺歌海盆地为例","authors":"An Jintao, Li Jun, Honglin Huang, Hui Zhang, Hongwei Yang, Geng Zhang, Sainan Chen","doi":"10.1186/s40517-025-00332-x","DOIUrl":null,"url":null,"abstract":"<div><p>Under the influence of diapir structure, the formation pressure system is complicated. The characteristics of high temperature and high pressure are obvious, the prediction is difficult, and complex accidents such as well kick and leakage are frequent, which seriously restrict the efficient development of oil and gas resources. Therefore, taking Yinggehai Basin in China as an example, combined with the evolution characteristics of diapir structure, the influence of diapir structure on abnormal high-pressure, wellhole collapse and fracture is analyzed. Three pressure calculation methods are selected, and the distribution rules of pressures and safety density window are analyzed, too. The results show that the diapir structure and its associated fault not only constitute the fluid transport system, but also make the deep overpressure transfer upward and accumulate into high pressure in the shallow formation, and the development of the associated fault destroy the integrity of the formation rock and reduce the strength of the rock. The upwelling of hot fluid changes the local geothermal conditions, reduces the hydrocarbon generation threshold of shallow source rocks, promotes the evolution of clay minerals, causes hydrothermal expansion, and enhances the shallow high pressure. In high-temperature environment, the cooling effect of drilling fluid will produce heating stress, change the stress distribution around the wellhole, and increase the risk of wellbore instability. Additionally, under the influence of diapir structures, the pore pressure in deep formations increases, while the fracture pressure decreases, resulting in a significantly narrowed safe density window. The safety density window width generally presents a half-spindle shape, and with the increase of depth, the window width increases first and then decreases.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-025-00332-x","citationCount":"0","resultStr":"{\"title\":\"An investigation into the impact of diapir structures on formation pressure systems: a case study of the Yinggehai Basin, China\",\"authors\":\"An Jintao, Li Jun, Honglin Huang, Hui Zhang, Hongwei Yang, Geng Zhang, Sainan Chen\",\"doi\":\"10.1186/s40517-025-00332-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Under the influence of diapir structure, the formation pressure system is complicated. The characteristics of high temperature and high pressure are obvious, the prediction is difficult, and complex accidents such as well kick and leakage are frequent, which seriously restrict the efficient development of oil and gas resources. Therefore, taking Yinggehai Basin in China as an example, combined with the evolution characteristics of diapir structure, the influence of diapir structure on abnormal high-pressure, wellhole collapse and fracture is analyzed. Three pressure calculation methods are selected, and the distribution rules of pressures and safety density window are analyzed, too. The results show that the diapir structure and its associated fault not only constitute the fluid transport system, but also make the deep overpressure transfer upward and accumulate into high pressure in the shallow formation, and the development of the associated fault destroy the integrity of the formation rock and reduce the strength of the rock. The upwelling of hot fluid changes the local geothermal conditions, reduces the hydrocarbon generation threshold of shallow source rocks, promotes the evolution of clay minerals, causes hydrothermal expansion, and enhances the shallow high pressure. In high-temperature environment, the cooling effect of drilling fluid will produce heating stress, change the stress distribution around the wellhole, and increase the risk of wellbore instability. Additionally, under the influence of diapir structures, the pore pressure in deep formations increases, while the fracture pressure decreases, resulting in a significantly narrowed safe density window. The safety density window width generally presents a half-spindle shape, and with the increase of depth, the window width increases first and then decreases.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-025-00332-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-025-00332-x\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-025-00332-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An investigation into the impact of diapir structures on formation pressure systems: a case study of the Yinggehai Basin, China
Under the influence of diapir structure, the formation pressure system is complicated. The characteristics of high temperature and high pressure are obvious, the prediction is difficult, and complex accidents such as well kick and leakage are frequent, which seriously restrict the efficient development of oil and gas resources. Therefore, taking Yinggehai Basin in China as an example, combined with the evolution characteristics of diapir structure, the influence of diapir structure on abnormal high-pressure, wellhole collapse and fracture is analyzed. Three pressure calculation methods are selected, and the distribution rules of pressures and safety density window are analyzed, too. The results show that the diapir structure and its associated fault not only constitute the fluid transport system, but also make the deep overpressure transfer upward and accumulate into high pressure in the shallow formation, and the development of the associated fault destroy the integrity of the formation rock and reduce the strength of the rock. The upwelling of hot fluid changes the local geothermal conditions, reduces the hydrocarbon generation threshold of shallow source rocks, promotes the evolution of clay minerals, causes hydrothermal expansion, and enhances the shallow high pressure. In high-temperature environment, the cooling effect of drilling fluid will produce heating stress, change the stress distribution around the wellhole, and increase the risk of wellbore instability. Additionally, under the influence of diapir structures, the pore pressure in deep formations increases, while the fracture pressure decreases, resulting in a significantly narrowed safe density window. The safety density window width generally presents a half-spindle shape, and with the increase of depth, the window width increases first and then decreases.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.