共价和非共价RBPI-CC配合物构象和功能性质的评价

IF 2.9 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Dan Li, Tong Wang, Yajie Dai, Liqi Wang, Dianyu Yu, Ying Ma
{"title":"共价和非共价RBPI-CC配合物构象和功能性质的评价","authors":"Dan Li,&nbsp;Tong Wang,&nbsp;Yajie Dai,&nbsp;Liqi Wang,&nbsp;Dianyu Yu,&nbsp;Ying Ma","doi":"10.1007/s11694-024-02983-z","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigated the binding interaction between (+)-catechin (CC) and rice bran protein isolate (RBPI) by determining the structure and function. The binding methods were covalent and non-covalent with different CC concentrations (0.05, 0.15, and 0.25%). Compared with non-covalent interactions, CC was more likely to form covalent interactions with RBPI. Additionally, the oligomers were formed during the covalent interactions of protein to CC. The results showed that CC reduced the ɑ-helices and β-sheets of the protein, and increased β-turns and random coils. The content of SH group contents decreased with the increase of CC concentration. Since in the covalent interactions at pH 9.0, the negatively charged quinonoid forms of CC will neutralize the positively charged protein, so the absolute ζ-potential will increase. The covalently linked RBPI-CC complexes have a smaller particle size. It can be seen from the microscopic image that the protein forms become more granular through the covalent action of CC. In this contribution functional properties were obtained by emulsifying activity index (EAI), emulsifying stability index (ESI), water holding capacity (WHC) and fat holding capacity (FHC). The WHC and FHC exhibited noticeable improvement, especially when the covalent interactions concentration of CC was 0.15%. Additionally, CC effectively increased the antioxidant activity of RBPI. This study is advantageous to elucidate the mechanisms underlying the interactions of CC with RBPI and the possible uses of RBPI-CC complexes in food formulations.</p></div>","PeriodicalId":631,"journal":{"name":"Journal of Food Measurement and Characterization","volume":"19 1","pages":"480 - 491"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of conformational and functional properties of covalent and non-covalent RBPI-CC complexes\",\"authors\":\"Dan Li,&nbsp;Tong Wang,&nbsp;Yajie Dai,&nbsp;Liqi Wang,&nbsp;Dianyu Yu,&nbsp;Ying Ma\",\"doi\":\"10.1007/s11694-024-02983-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigated the binding interaction between (+)-catechin (CC) and rice bran protein isolate (RBPI) by determining the structure and function. The binding methods were covalent and non-covalent with different CC concentrations (0.05, 0.15, and 0.25%). Compared with non-covalent interactions, CC was more likely to form covalent interactions with RBPI. Additionally, the oligomers were formed during the covalent interactions of protein to CC. The results showed that CC reduced the ɑ-helices and β-sheets of the protein, and increased β-turns and random coils. The content of SH group contents decreased with the increase of CC concentration. Since in the covalent interactions at pH 9.0, the negatively charged quinonoid forms of CC will neutralize the positively charged protein, so the absolute ζ-potential will increase. The covalently linked RBPI-CC complexes have a smaller particle size. It can be seen from the microscopic image that the protein forms become more granular through the covalent action of CC. In this contribution functional properties were obtained by emulsifying activity index (EAI), emulsifying stability index (ESI), water holding capacity (WHC) and fat holding capacity (FHC). The WHC and FHC exhibited noticeable improvement, especially when the covalent interactions concentration of CC was 0.15%. Additionally, CC effectively increased the antioxidant activity of RBPI. This study is advantageous to elucidate the mechanisms underlying the interactions of CC with RBPI and the possible uses of RBPI-CC complexes in food formulations.</p></div>\",\"PeriodicalId\":631,\"journal\":{\"name\":\"Journal of Food Measurement and Characterization\",\"volume\":\"19 1\",\"pages\":\"480 - 491\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Measurement and Characterization\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11694-024-02983-z\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Measurement and Characterization","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11694-024-02983-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过对(+)-儿茶素(CC)与米糠分离蛋白(RBPI)结构和功能的测定,研究了两者之间的结合相互作用。不同CC浓度(0.05、0.15和0.25%)的结合方式为共价和非共价。与非共价相互作用相比,CC更容易与RBPI形成共价相互作用。结果表明,CC减少了蛋白质的β-片和β-螺旋,增加了蛋白质的β-圈和随机线圈。SH组含量随CC浓度的增加而降低。由于在pH为9.0的共价相互作用中,带负电荷的类醌形式的CC将中和带正电荷的蛋白质,因此绝对的ζ电位将增加。共价连接的RBPI-CC配合物具有较小的粒径。从显微图像中可以看出,通过CC的共价作用,蛋白质形态变得更加颗粒化。在此贡献中,通过乳化活性指数(EAI)、乳化稳定性指数(ESI)、持水能力(WHC)和持脂能力(FHC)获得了功能特性。当CC的共价相互作用浓度为0.15%时,WHC和FHC均有明显改善。此外,CC还能有效提高RBPI的抗氧化活性。本研究有助于阐明CC与RBPI相互作用的机制,以及RBPI-CC复合物在食品配方中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluation of conformational and functional properties of covalent and non-covalent RBPI-CC complexes

Evaluation of conformational and functional properties of covalent and non-covalent RBPI-CC complexes

This work investigated the binding interaction between (+)-catechin (CC) and rice bran protein isolate (RBPI) by determining the structure and function. The binding methods were covalent and non-covalent with different CC concentrations (0.05, 0.15, and 0.25%). Compared with non-covalent interactions, CC was more likely to form covalent interactions with RBPI. Additionally, the oligomers were formed during the covalent interactions of protein to CC. The results showed that CC reduced the ɑ-helices and β-sheets of the protein, and increased β-turns and random coils. The content of SH group contents decreased with the increase of CC concentration. Since in the covalent interactions at pH 9.0, the negatively charged quinonoid forms of CC will neutralize the positively charged protein, so the absolute ζ-potential will increase. The covalently linked RBPI-CC complexes have a smaller particle size. It can be seen from the microscopic image that the protein forms become more granular through the covalent action of CC. In this contribution functional properties were obtained by emulsifying activity index (EAI), emulsifying stability index (ESI), water holding capacity (WHC) and fat holding capacity (FHC). The WHC and FHC exhibited noticeable improvement, especially when the covalent interactions concentration of CC was 0.15%. Additionally, CC effectively increased the antioxidant activity of RBPI. This study is advantageous to elucidate the mechanisms underlying the interactions of CC with RBPI and the possible uses of RBPI-CC complexes in food formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Measurement and Characterization
Journal of Food Measurement and Characterization Agricultural and Biological Sciences-Food Science
CiteScore
6.00
自引率
11.80%
发文量
425
期刊介绍: This interdisciplinary journal publishes new measurement results, characteristic properties, differentiating patterns, measurement methods and procedures for such purposes as food process innovation, product development, quality control, and safety assurance. The journal encompasses all topics related to food property measurement and characterization, including all types of measured properties of food and food materials, features and patterns, measurement principles and techniques, development and evaluation of technologies, novel uses and applications, and industrial implementation of systems and procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信