通过浅阱态调制增强绿色发光钙钛矿微球的负热猝灭

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhenxu Lin  (, ), Rui Huang  (, ), Jie Song  (, ), Yi Zhang  (, ), Zewen Lin  (, ), Hongliang Li  (, ), Haixia Wu  (, ), Dejian Hou  (, ), Yanqing Guo  (, ), Jing Wang  (, ), Paul K. Chu  (, )
{"title":"通过浅阱态调制增强绿色发光钙钛矿微球的负热猝灭","authors":"Zhenxu Lin \n (,&nbsp;),&nbsp;Rui Huang \n (,&nbsp;),&nbsp;Jie Song \n (,&nbsp;),&nbsp;Yi Zhang \n (,&nbsp;),&nbsp;Zewen Lin \n (,&nbsp;),&nbsp;Hongliang Li \n (,&nbsp;),&nbsp;Haixia Wu \n (,&nbsp;),&nbsp;Dejian Hou \n (,&nbsp;),&nbsp;Yanqing Guo \n (,&nbsp;),&nbsp;Jing Wang \n (,&nbsp;),&nbsp;Paul K. Chu \n (,&nbsp;)","doi":"10.1007/s40843-024-3134-1","DOIUrl":null,"url":null,"abstract":"<div><p>For luminescent materials, negative thermal quenching (NTQ), characterized by an increase in the luminescent intensity with temperature, has a large potential in lighting and display technologies. However, leveraging NTQ in metal halide perovskites is challenging, and the mechanism is not well understood. Herein, by utilizing low-temperature photoluminescence, persistent luminescence and thermoluminescence, the origins of NTQ in CsPbBr<sub>3</sub> microspheres are systematically studied, which pertain to the liberation of carriers from shallow trap states. Experimental and theoretical investigations reveal that the energy of these shallow defect states is approximately 0.135 eV beneath the conduction band. A rapid thermal treatment increases the density of these shallow traps and amplifies the NTQ effect, resulting in an enhancement of room-temperature photoluminescence by more than 60% compared to that at 150 K. The process also reduces the threshold for amplified spontaneous emission to about 45 W/cm<sup>2</sup>. Our findings not only provide a deeper understanding of the NTQ phenomenon in CsPbBr<sub>3</sub> microspheres but also open new avenues for enhancing the performance of perovskite optoelectronic devices through energy state regulation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"149 - 155"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3134-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing negative thermal quenching in green-emitting perovskite microspheres via shallow trap state modulation\",\"authors\":\"Zhenxu Lin \\n (,&nbsp;),&nbsp;Rui Huang \\n (,&nbsp;),&nbsp;Jie Song \\n (,&nbsp;),&nbsp;Yi Zhang \\n (,&nbsp;),&nbsp;Zewen Lin \\n (,&nbsp;),&nbsp;Hongliang Li \\n (,&nbsp;),&nbsp;Haixia Wu \\n (,&nbsp;),&nbsp;Dejian Hou \\n (,&nbsp;),&nbsp;Yanqing Guo \\n (,&nbsp;),&nbsp;Jing Wang \\n (,&nbsp;),&nbsp;Paul K. Chu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3134-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For luminescent materials, negative thermal quenching (NTQ), characterized by an increase in the luminescent intensity with temperature, has a large potential in lighting and display technologies. However, leveraging NTQ in metal halide perovskites is challenging, and the mechanism is not well understood. Herein, by utilizing low-temperature photoluminescence, persistent luminescence and thermoluminescence, the origins of NTQ in CsPbBr<sub>3</sub> microspheres are systematically studied, which pertain to the liberation of carriers from shallow trap states. Experimental and theoretical investigations reveal that the energy of these shallow defect states is approximately 0.135 eV beneath the conduction band. A rapid thermal treatment increases the density of these shallow traps and amplifies the NTQ effect, resulting in an enhancement of room-temperature photoluminescence by more than 60% compared to that at 150 K. The process also reduces the threshold for amplified spontaneous emission to about 45 W/cm<sup>2</sup>. Our findings not only provide a deeper understanding of the NTQ phenomenon in CsPbBr<sub>3</sub> microspheres but also open new avenues for enhancing the performance of perovskite optoelectronic devices through energy state regulation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 1\",\"pages\":\"149 - 155\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40843-024-3134-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3134-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3134-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于发光材料而言,以发光强度随温度升高而增加为特征的负热猝灭(NTQ)在照明和显示技术中具有很大的潜力。然而,利用金属卤化物钙钛矿中的NTQ是具有挑战性的,其机制尚不清楚。本文通过低温光致发光、持续发光和热致发光等方法,系统研究了CsPbBr3微球中NTQ的来源,这与载流子从浅阱态中解放有关。实验和理论研究表明,这些浅缺陷态在导带下的能量约为0.135 eV。快速热处理增加了这些浅阱的密度,并放大了NTQ效应,导致室温光致发光比150 K时增强了60%以上。该工艺还将放大自发辐射的阈值降低到约45 W/cm2。我们的研究结果不仅为CsPbBr3微球中的NTQ现象提供了更深入的理解,而且为通过能量状态调节提高钙钛矿光电子器件的性能开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing negative thermal quenching in green-emitting perovskite microspheres via shallow trap state modulation

For luminescent materials, negative thermal quenching (NTQ), characterized by an increase in the luminescent intensity with temperature, has a large potential in lighting and display technologies. However, leveraging NTQ in metal halide perovskites is challenging, and the mechanism is not well understood. Herein, by utilizing low-temperature photoluminescence, persistent luminescence and thermoluminescence, the origins of NTQ in CsPbBr3 microspheres are systematically studied, which pertain to the liberation of carriers from shallow trap states. Experimental and theoretical investigations reveal that the energy of these shallow defect states is approximately 0.135 eV beneath the conduction band. A rapid thermal treatment increases the density of these shallow traps and amplifies the NTQ effect, resulting in an enhancement of room-temperature photoluminescence by more than 60% compared to that at 150 K. The process also reduces the threshold for amplified spontaneous emission to about 45 W/cm2. Our findings not only provide a deeper understanding of the NTQ phenomenon in CsPbBr3 microspheres but also open new avenues for enhancing the performance of perovskite optoelectronic devices through energy state regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信