{"title":"脱细胞沃顿果冻纳米颗粒对丁酸多羟基-壳聚糖静电纺软骨组织工程支架的影响","authors":"Yasamin Alikhasi Amnieh, Saeed Karbasi, Saied Habibian Dehkordi, Mohammad Shadkhast, Arefeh Basiri","doi":"10.1007/s10924-024-03385-4","DOIUrl":null,"url":null,"abstract":"<div><p>An integral part of cartilage tissue engineering is scaffold fabrication methods and the selection of materials that mimic the extracellular matrix of the host tissue. This study aims to investigate the effects of the decellularized extracellular matrix of cord Wharton’s jelly (DWJM) on polyhydroxybutyrate (PHB)-nano chitosan (Cs) electrospun scaffold by adding (0.1, 0.2, and 0.3) wt% of DWJM nanoparticles. Evaluation of the results regarding fiber diameter, hydrophilicity, and mechanical properties confirmed that the scaffold with 0.2 wt% DWJM nanoparticles is the optimal choice. The average fiber diameter decreased from 441.5 to 327.4 nm, while the ultimate strength increased from 5.1 to 7.5 MPa, and the elongation at break increased from 11.9 to 13.7%. The addition of DWJM nanoparticles played a significant role in reducing crystallinity, increasing hydrolytic decomposition, appropriate degradation, and enhancing cell compatibility. Based on the results of the MTT test, a significant increase in the growth and proliferation of chondrocytes on the scaffolds with 0.2 wt% DWJM nanoparticles was observed compared to the PHB-Cs scaffold during 7 days of cell culture. In conclusion, the nanocomposite scaffold containing of 0.2 wt% DWJM nanoparticles exhibits efficient biological behavior and can serve as a suitable option for cartilage tissue engineering.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 1","pages":"545 - 569"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Effects of Decellularized Wharton Jelly Nanoparticles on Polyhydroxy Butyrate-Chitosan Electrospun Scaffolds for Cartilage Tissue Engineering Applications\",\"authors\":\"Yasamin Alikhasi Amnieh, Saeed Karbasi, Saied Habibian Dehkordi, Mohammad Shadkhast, Arefeh Basiri\",\"doi\":\"10.1007/s10924-024-03385-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An integral part of cartilage tissue engineering is scaffold fabrication methods and the selection of materials that mimic the extracellular matrix of the host tissue. This study aims to investigate the effects of the decellularized extracellular matrix of cord Wharton’s jelly (DWJM) on polyhydroxybutyrate (PHB)-nano chitosan (Cs) electrospun scaffold by adding (0.1, 0.2, and 0.3) wt% of DWJM nanoparticles. Evaluation of the results regarding fiber diameter, hydrophilicity, and mechanical properties confirmed that the scaffold with 0.2 wt% DWJM nanoparticles is the optimal choice. The average fiber diameter decreased from 441.5 to 327.4 nm, while the ultimate strength increased from 5.1 to 7.5 MPa, and the elongation at break increased from 11.9 to 13.7%. The addition of DWJM nanoparticles played a significant role in reducing crystallinity, increasing hydrolytic decomposition, appropriate degradation, and enhancing cell compatibility. Based on the results of the MTT test, a significant increase in the growth and proliferation of chondrocytes on the scaffolds with 0.2 wt% DWJM nanoparticles was observed compared to the PHB-Cs scaffold during 7 days of cell culture. In conclusion, the nanocomposite scaffold containing of 0.2 wt% DWJM nanoparticles exhibits efficient biological behavior and can serve as a suitable option for cartilage tissue engineering.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 1\",\"pages\":\"545 - 569\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03385-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03385-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Evaluation of the Effects of Decellularized Wharton Jelly Nanoparticles on Polyhydroxy Butyrate-Chitosan Electrospun Scaffolds for Cartilage Tissue Engineering Applications
An integral part of cartilage tissue engineering is scaffold fabrication methods and the selection of materials that mimic the extracellular matrix of the host tissue. This study aims to investigate the effects of the decellularized extracellular matrix of cord Wharton’s jelly (DWJM) on polyhydroxybutyrate (PHB)-nano chitosan (Cs) electrospun scaffold by adding (0.1, 0.2, and 0.3) wt% of DWJM nanoparticles. Evaluation of the results regarding fiber diameter, hydrophilicity, and mechanical properties confirmed that the scaffold with 0.2 wt% DWJM nanoparticles is the optimal choice. The average fiber diameter decreased from 441.5 to 327.4 nm, while the ultimate strength increased from 5.1 to 7.5 MPa, and the elongation at break increased from 11.9 to 13.7%. The addition of DWJM nanoparticles played a significant role in reducing crystallinity, increasing hydrolytic decomposition, appropriate degradation, and enhancing cell compatibility. Based on the results of the MTT test, a significant increase in the growth and proliferation of chondrocytes on the scaffolds with 0.2 wt% DWJM nanoparticles was observed compared to the PHB-Cs scaffold during 7 days of cell culture. In conclusion, the nanocomposite scaffold containing of 0.2 wt% DWJM nanoparticles exhibits efficient biological behavior and can serve as a suitable option for cartilage tissue engineering.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.