不同pms -铝轨结构下EDS磁浮系统性能和成本的数值研究

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Hakki Mollahasanoglu, Murat Abdioglu, Ufuk Kemal Ozturk, Halil Ibrahim Okumus, Elvan Coskun, Ali Gencer
{"title":"不同pms -铝轨结构下EDS磁浮系统性能和成本的数值研究","authors":"Hakki Mollahasanoglu,&nbsp;Murat Abdioglu,&nbsp;Ufuk Kemal Ozturk,&nbsp;Halil Ibrahim Okumus,&nbsp;Elvan Coskun,&nbsp;Ali Gencer","doi":"10.1007/s10948-024-06899-z","DOIUrl":null,"url":null,"abstract":"<div><p>Permanent-magnet electro-dynamic suspension (PMs-EDS) maglev systems are shaping the future of modern transport by providing high-speed, energy-efficient, and sustainable transport solutions. In this study, numerical simulations were performed to determine the optimum geometrical parameters of aluminum rail and permanent magnet arrangements for EDS systems. For that, the aluminum rail and permanent magnet combinations were investigated, and then the same simulations were repeated by creating cavities in the aluminum rails for cost efficiency. The highest levitation-to-drag ratio (LDR) was achieved with magnet arrays having a fill factor of 0.4, 20 mm thick aluminum, and an aluminum rail width of 60 mm. Additionally, by creating cavities into the rails, it was calculated that approximately $2.44 million could be saved from the total cost of $17.34 million cost of the 1000 km double-strip aluminum rails, with negligible reduction in the LDR ratio. The findings of this study provide a sustainable and economical transport solution by increasing the cost effectiveness of PMs-EDS maglev systems. The results obtained may pave the way for the development of different types of applications of maglev technology and increase the potential for commercial use of maglev transport systems.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of EDS Maglev Systems in Terms of Performance and Cost for Different PMs-Aluminum Rail Arrangements\",\"authors\":\"Hakki Mollahasanoglu,&nbsp;Murat Abdioglu,&nbsp;Ufuk Kemal Ozturk,&nbsp;Halil Ibrahim Okumus,&nbsp;Elvan Coskun,&nbsp;Ali Gencer\",\"doi\":\"10.1007/s10948-024-06899-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Permanent-magnet electro-dynamic suspension (PMs-EDS) maglev systems are shaping the future of modern transport by providing high-speed, energy-efficient, and sustainable transport solutions. In this study, numerical simulations were performed to determine the optimum geometrical parameters of aluminum rail and permanent magnet arrangements for EDS systems. For that, the aluminum rail and permanent magnet combinations were investigated, and then the same simulations were repeated by creating cavities in the aluminum rails for cost efficiency. The highest levitation-to-drag ratio (LDR) was achieved with magnet arrays having a fill factor of 0.4, 20 mm thick aluminum, and an aluminum rail width of 60 mm. Additionally, by creating cavities into the rails, it was calculated that approximately $2.44 million could be saved from the total cost of $17.34 million cost of the 1000 km double-strip aluminum rails, with negligible reduction in the LDR ratio. The findings of this study provide a sustainable and economical transport solution by increasing the cost effectiveness of PMs-EDS maglev systems. The results obtained may pave the way for the development of different types of applications of maglev technology and increase the potential for commercial use of maglev transport systems.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06899-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06899-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

永磁电动悬挂(PMs-EDS)磁悬浮系统通过提供高速、节能和可持续的交通解决方案,正在塑造现代交通的未来。在本研究中,通过数值模拟来确定EDS系统的铝轨和永磁体布置的最佳几何参数。为此,研究了铝轨和永磁体组合,然后通过在铝轨中创建空腔来重复相同的模拟,以提高成本效率。磁体阵列的悬浮阻力比(LDR)最高,填充系数为0.4,铝厚度为20毫米,铝轨宽度为60毫米。此外,通过在钢轨上制造空腔,可以从1000公里双带铝钢轨的总成本1734万美元中节省约244万美元,而LDR比的降低可以忽略不计。本研究的结果通过提高PMs-EDS磁悬浮系统的成本效益,提供了一种可持续和经济的运输解决方案。所获得的结果可能为开发不同类型的磁悬浮技术应用铺平道路,并增加磁悬浮运输系统商业应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation of EDS Maglev Systems in Terms of Performance and Cost for Different PMs-Aluminum Rail Arrangements

Permanent-magnet electro-dynamic suspension (PMs-EDS) maglev systems are shaping the future of modern transport by providing high-speed, energy-efficient, and sustainable transport solutions. In this study, numerical simulations were performed to determine the optimum geometrical parameters of aluminum rail and permanent magnet arrangements for EDS systems. For that, the aluminum rail and permanent magnet combinations were investigated, and then the same simulations were repeated by creating cavities in the aluminum rails for cost efficiency. The highest levitation-to-drag ratio (LDR) was achieved with magnet arrays having a fill factor of 0.4, 20 mm thick aluminum, and an aluminum rail width of 60 mm. Additionally, by creating cavities into the rails, it was calculated that approximately $2.44 million could be saved from the total cost of $17.34 million cost of the 1000 km double-strip aluminum rails, with negligible reduction in the LDR ratio. The findings of this study provide a sustainable and economical transport solution by increasing the cost effectiveness of PMs-EDS maglev systems. The results obtained may pave the way for the development of different types of applications of maglev technology and increase the potential for commercial use of maglev transport systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信