Zein K. Heiba, Ah Abd Ellatief, Mohamed Bakr Mohamed, A. M. El-naggar, Hassan Elshimy
{"title":"Sn1-xCoxS纳米复合材料作为硼氢化钠甲醇解制氢催化剂的研究","authors":"Zein K. Heiba, Ah Abd Ellatief, Mohamed Bakr Mohamed, A. M. El-naggar, Hassan Elshimy","doi":"10.1007/s10971-024-06596-2","DOIUrl":null,"url":null,"abstract":"<div><p>Samples of Sn<sub>1-x</sub>Co<sub>x</sub>S (x = 0, 0.025, 0.075, 0.1) were synthesized via the thermal evaporation approach under N<sub>2</sub> gas. The phase characterization of the synthesized samples was conducted employing HighScore plus software. The quantitative assessment of the resulting phases and their structure and microstructure parameters were determined using Rietveld refinement methodology. The SEM images validated the formation of two-dimensional sheets firmly stacked in building blocks, and the corresponding EDS analysis substantiated the incorporation of Co ions in the samples. FTIR and Raman spectroscopic techniques were utilized to corroborate the established phases, chemical composition and the inclusion of Co within the samples. The impact of doping on the absorption and reflectance features of Sn<sub>1-x</sub>Co<sub>x</sub>S samples was investigated. The substantial absorption that forms a plateau in the visible range suggests that all samples possess the capability for effective utilization of visible light. In the UV and visible regions, the sample with x = 0.025 revealed the highest absorbance, while in the IR region, the sample with x = 0.1 displayed the peak absorbance value. The lowest optical band gap energy values (1.15 and 3.38 eV) were obtained at x = 0.075. The influence of nano Sn<sub>1-x</sub>Co<sub>x</sub>S samples on the rate of hydrogen generation through the utilization of sodium borohydride (NaBH<sub>4</sub>) is explored. Sample containing 10% Co exhibits the highest generation rate at 59382 mL min<sup>−1</sup>g<sup>−1</sup>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"123 - 131"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Sn1-xCoxS nanocomposites as a catalyst for hydrogen production from sodium borohydride methanolysis\",\"authors\":\"Zein K. Heiba, Ah Abd Ellatief, Mohamed Bakr Mohamed, A. M. El-naggar, Hassan Elshimy\",\"doi\":\"10.1007/s10971-024-06596-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Samples of Sn<sub>1-x</sub>Co<sub>x</sub>S (x = 0, 0.025, 0.075, 0.1) were synthesized via the thermal evaporation approach under N<sub>2</sub> gas. The phase characterization of the synthesized samples was conducted employing HighScore plus software. The quantitative assessment of the resulting phases and their structure and microstructure parameters were determined using Rietveld refinement methodology. The SEM images validated the formation of two-dimensional sheets firmly stacked in building blocks, and the corresponding EDS analysis substantiated the incorporation of Co ions in the samples. FTIR and Raman spectroscopic techniques were utilized to corroborate the established phases, chemical composition and the inclusion of Co within the samples. The impact of doping on the absorption and reflectance features of Sn<sub>1-x</sub>Co<sub>x</sub>S samples was investigated. The substantial absorption that forms a plateau in the visible range suggests that all samples possess the capability for effective utilization of visible light. In the UV and visible regions, the sample with x = 0.025 revealed the highest absorbance, while in the IR region, the sample with x = 0.1 displayed the peak absorbance value. The lowest optical band gap energy values (1.15 and 3.38 eV) were obtained at x = 0.075. The influence of nano Sn<sub>1-x</sub>Co<sub>x</sub>S samples on the rate of hydrogen generation through the utilization of sodium borohydride (NaBH<sub>4</sub>) is explored. Sample containing 10% Co exhibits the highest generation rate at 59382 mL min<sup>−1</sup>g<sup>−1</sup>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"113 1\",\"pages\":\"123 - 131\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06596-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06596-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
采用氮气热蒸发法制备了Sn1-xCoxS (x = 0、0.025、0.075、0.1)样品。采用HighScore plus软件对合成样品进行物相表征。采用Rietveld精化方法对所得相及其组织和显微组织参数进行定量评价。SEM图像证实了二维薄片牢固地堆叠在建筑块中的形成,相应的EDS分析证实了样品中Co离子的掺入。利用FTIR和拉曼光谱技术证实了样品中确定的相、化学成分和Co的包合。研究了掺杂对Sn1-xCoxS样品吸收和反射特性的影响。在可见光范围内形成平台的大量吸收表明所有样品都具有有效利用可见光的能力。在紫外区和可见光区,x = 0.025的样品吸光度最高,而在红外区,x = 0.1的样品吸光度最高。在x = 0.075处获得了最低的光学带隙能值(1.15和3.38 eV)。探讨了纳米Sn1-xCoxS样品对硼氢化钠(NaBH4)产氢速率的影响。含有10% Co的样品在59382 mL min - 1g - 1时显示出最高的生成率。图形抽象
Investigation of Sn1-xCoxS nanocomposites as a catalyst for hydrogen production from sodium borohydride methanolysis
Samples of Sn1-xCoxS (x = 0, 0.025, 0.075, 0.1) were synthesized via the thermal evaporation approach under N2 gas. The phase characterization of the synthesized samples was conducted employing HighScore plus software. The quantitative assessment of the resulting phases and their structure and microstructure parameters were determined using Rietveld refinement methodology. The SEM images validated the formation of two-dimensional sheets firmly stacked in building blocks, and the corresponding EDS analysis substantiated the incorporation of Co ions in the samples. FTIR and Raman spectroscopic techniques were utilized to corroborate the established phases, chemical composition and the inclusion of Co within the samples. The impact of doping on the absorption and reflectance features of Sn1-xCoxS samples was investigated. The substantial absorption that forms a plateau in the visible range suggests that all samples possess the capability for effective utilization of visible light. In the UV and visible regions, the sample with x = 0.025 revealed the highest absorbance, while in the IR region, the sample with x = 0.1 displayed the peak absorbance value. The lowest optical band gap energy values (1.15 and 3.38 eV) were obtained at x = 0.075. The influence of nano Sn1-xCoxS samples on the rate of hydrogen generation through the utilization of sodium borohydride (NaBH4) is explored. Sample containing 10% Co exhibits the highest generation rate at 59382 mL min−1g−1.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.