Rafael Álvarez-García, Seung-Joo Lee, Timo Weigand
{"title":"无限距离上的非极小椭圆三折体II:渐近物理学","authors":"Rafael Álvarez-García, Seung-Joo Lee, Timo Weigand","doi":"10.1007/JHEP01(2025)058","DOIUrl":null,"url":null,"abstract":"<p>We interpret infinite-distance limits in the complex structure moduli space of F-theory compactifications to six dimensions in the light of general ideas in quantum gravity. The limits we focus on arise from non-minimal singularities in the elliptic fiber over curves in a Hirzebruch surface base, which do not admit a crepant resolution. Such degenerations take place along infinite directions in the non-perturbative brane moduli space in F-theory. A blow-up procedure, detailed generally in Part I of this project [1], gives rise to an internal space consisting of a union of log Calabi-Yau threefolds glued together along their boundaries. We geometrically classify the resulting configurations for genus-zero single infinite-distance limits. Special emphasis is put on the structure of singular fibers in codimension zero and one. As our main result, we interpret the central fiber of these degenerations as endpoints of a decompactification limit with six-dimensional defects. The conclusions rely on an adiabatic limit to gain information on the asymptotically massless states from the structure of vanishing cycles. We also compare our analysis to the heterotic dual description where available. Our findings are in agreement with general expectations from quantum gravity and provide further evidence for the Emergent String Conjecture.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)058.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-minimal elliptic threefolds at infinite distance II: asymptotic physics\",\"authors\":\"Rafael Álvarez-García, Seung-Joo Lee, Timo Weigand\",\"doi\":\"10.1007/JHEP01(2025)058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We interpret infinite-distance limits in the complex structure moduli space of F-theory compactifications to six dimensions in the light of general ideas in quantum gravity. The limits we focus on arise from non-minimal singularities in the elliptic fiber over curves in a Hirzebruch surface base, which do not admit a crepant resolution. Such degenerations take place along infinite directions in the non-perturbative brane moduli space in F-theory. A blow-up procedure, detailed generally in Part I of this project [1], gives rise to an internal space consisting of a union of log Calabi-Yau threefolds glued together along their boundaries. We geometrically classify the resulting configurations for genus-zero single infinite-distance limits. Special emphasis is put on the structure of singular fibers in codimension zero and one. As our main result, we interpret the central fiber of these degenerations as endpoints of a decompactification limit with six-dimensional defects. The conclusions rely on an adiabatic limit to gain information on the asymptotically massless states from the structure of vanishing cycles. We also compare our analysis to the heterotic dual description where available. Our findings are in agreement with general expectations from quantum gravity and provide further evidence for the Emergent String Conjecture.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)058.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP01(2025)058\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)058","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Non-minimal elliptic threefolds at infinite distance II: asymptotic physics
We interpret infinite-distance limits in the complex structure moduli space of F-theory compactifications to six dimensions in the light of general ideas in quantum gravity. The limits we focus on arise from non-minimal singularities in the elliptic fiber over curves in a Hirzebruch surface base, which do not admit a crepant resolution. Such degenerations take place along infinite directions in the non-perturbative brane moduli space in F-theory. A blow-up procedure, detailed generally in Part I of this project [1], gives rise to an internal space consisting of a union of log Calabi-Yau threefolds glued together along their boundaries. We geometrically classify the resulting configurations for genus-zero single infinite-distance limits. Special emphasis is put on the structure of singular fibers in codimension zero and one. As our main result, we interpret the central fiber of these degenerations as endpoints of a decompactification limit with six-dimensional defects. The conclusions rely on an adiabatic limit to gain information on the asymptotically massless states from the structure of vanishing cycles. We also compare our analysis to the heterotic dual description where available. Our findings are in agreement with general expectations from quantum gravity and provide further evidence for the Emergent String Conjecture.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).