利用功函数加速的钼基异质结电子重构促进析氢

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang Chen  (, ), Shuai Feng  (, ), Song Xie  (, ), Yaping Miao  (, ), Biao Gao  (, ), Xuming Zhang  (, ), Li Huang  (, ), Yun Li  (, ), Paul K. Chu, Xiang Peng  (, )
{"title":"利用功函数加速的钼基异质结电子重构促进析氢","authors":"Xiang Chen \n (,&nbsp;),&nbsp;Shuai Feng \n (,&nbsp;),&nbsp;Song Xie \n (,&nbsp;),&nbsp;Yaping Miao \n (,&nbsp;),&nbsp;Biao Gao \n (,&nbsp;),&nbsp;Xuming Zhang \n (,&nbsp;),&nbsp;Li Huang \n (,&nbsp;),&nbsp;Yun Li \n (,&nbsp;),&nbsp;Paul K. Chu,&nbsp;Xiang Peng \n (,&nbsp;)","doi":"10.1007/s40843-024-3190-7","DOIUrl":null,"url":null,"abstract":"<div><p>Molybdenum-based catalysts have demonstrated significant potential in the electrocatalytic hydrogen evolution reaction (HER). However, the limited exposure of active sites and strong hydrogen adsorption result in suboptimal performance. Herein, a Mo<sub>2</sub>N–MoSe<sub>2</sub> heterojunction is prepared on carbon cloth (MNS/CC) to enhance the HER. The strong electronic interaction between Mo<sub>2</sub>N and MoSe<sub>2</sub>, combined with the lower work function of Mo<sub>2</sub>N, creates an intrinsic electric field at the heterojunction interface, which markedly improves charge transfer efficiency. Additionally, the optimized electronic structure of Mo sites further enhances charge transfer and intrinsically catalytic activity in HER. As a result, MNS/CC requires overpotentials of mere 65 and 210 mV to achieve current densities of 20 mA cm<sup>−2</sup> and 1 A cm<sup>−2</sup>, respectively, with a Tafel slope of only 96 mV dec<sup>−1</sup>. Moreover, MNS/CC maintains stable operation at 1 A cm<sup>−2</sup> for 240 h without significant degradation. The results offer insights into the design of non-precious metal-based electro-catalysts for industrial hydrogen production.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"189 - 198"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction\",\"authors\":\"Xiang Chen \\n (,&nbsp;),&nbsp;Shuai Feng \\n (,&nbsp;),&nbsp;Song Xie \\n (,&nbsp;),&nbsp;Yaping Miao \\n (,&nbsp;),&nbsp;Biao Gao \\n (,&nbsp;),&nbsp;Xuming Zhang \\n (,&nbsp;),&nbsp;Li Huang \\n (,&nbsp;),&nbsp;Yun Li \\n (,&nbsp;),&nbsp;Paul K. Chu,&nbsp;Xiang Peng \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3190-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molybdenum-based catalysts have demonstrated significant potential in the electrocatalytic hydrogen evolution reaction (HER). However, the limited exposure of active sites and strong hydrogen adsorption result in suboptimal performance. Herein, a Mo<sub>2</sub>N–MoSe<sub>2</sub> heterojunction is prepared on carbon cloth (MNS/CC) to enhance the HER. The strong electronic interaction between Mo<sub>2</sub>N and MoSe<sub>2</sub>, combined with the lower work function of Mo<sub>2</sub>N, creates an intrinsic electric field at the heterojunction interface, which markedly improves charge transfer efficiency. Additionally, the optimized electronic structure of Mo sites further enhances charge transfer and intrinsically catalytic activity in HER. As a result, MNS/CC requires overpotentials of mere 65 and 210 mV to achieve current densities of 20 mA cm<sup>−2</sup> and 1 A cm<sup>−2</sup>, respectively, with a Tafel slope of only 96 mV dec<sup>−1</sup>. Moreover, MNS/CC maintains stable operation at 1 A cm<sup>−2</sup> for 240 h without significant degradation. The results offer insights into the design of non-precious metal-based electro-catalysts for industrial hydrogen production.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 1\",\"pages\":\"189 - 198\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3190-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3190-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钼基催化剂在电催化析氢反应(HER)中显示出巨大的潜力。然而,有限的活性位点暴露和强烈的氢吸附导致性能不理想。本文在碳布(MNS/CC)上制备了Mo2N-MoSe2异质结,以提高HER。Mo2N与MoSe2之间的强电子相互作用,加上Mo2N较低的功函数,在异质结界面处形成了本征电场,显著提高了电荷转移效率。此外,优化后的Mo位点的电子结构进一步增强了HER中的电荷转移和内在催化活性。因此,MNS/CC只需要65和210 mV的过电位就能分别达到20 mA cm - 2和1 a cm - 2的电流密度,塔菲尔斜率仅为96 mV dec - 1。此外,MNS/CC在1 A cm−2下保持稳定运行240小时,没有明显的退化。该结果为工业制氢非贵金属电催化剂的设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction

Molybdenum-based catalysts have demonstrated significant potential in the electrocatalytic hydrogen evolution reaction (HER). However, the limited exposure of active sites and strong hydrogen adsorption result in suboptimal performance. Herein, a Mo2N–MoSe2 heterojunction is prepared on carbon cloth (MNS/CC) to enhance the HER. The strong electronic interaction between Mo2N and MoSe2, combined with the lower work function of Mo2N, creates an intrinsic electric field at the heterojunction interface, which markedly improves charge transfer efficiency. Additionally, the optimized electronic structure of Mo sites further enhances charge transfer and intrinsically catalytic activity in HER. As a result, MNS/CC requires overpotentials of mere 65 and 210 mV to achieve current densities of 20 mA cm−2 and 1 A cm−2, respectively, with a Tafel slope of only 96 mV dec−1. Moreover, MNS/CC maintains stable operation at 1 A cm−2 for 240 h without significant degradation. The results offer insights into the design of non-precious metal-based electro-catalysts for industrial hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信