基于方向对应的虚拟环境下USV-AAV协同跨源点云配准

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Byoungkwon Yoon;Seokhyun Hong;Dongjun Lee
{"title":"基于方向对应的虚拟环境下USV-AAV协同跨源点云配准","authors":"Byoungkwon Yoon;Seokhyun Hong;Dongjun Lee","doi":"10.1109/LRA.2024.3523232","DOIUrl":null,"url":null,"abstract":"We propose a novel cross-source point cloud registration (CSPR) method for USV-AAV cooperation in lentic environments. In the wild outdoors, which is the typical working domain of the USV-AAV team, CSPR faces significant challenges due to platform-domain problems (complex unstructured surroundings and viewing angle difference) in addition to sensor-domain problems (varying density, noise pattern, and scale). These characteristics make large discrepancies in local geometry, causing existing CSPR methods that rely on point-to-point correspondence based on local geometry around key points (e.g. surface normal, shape function, angle) to struggle. To address this challenge, we propose the novel concept of a directional correspondence-based iterative cross-source point cloud registration algorithm. Instead of using point-to-point correspondence under large discrepancies in local geometry, we build correspondence about directions to enable robust registration in the wild outdoors. Also, since the proposed directional correspondence uses bearing angle and normalized coordinate, we can separate scale estimation with transformation, effectively resolving the problem of different scales between two point clouds. Our algorithm outperforms the state-of-the-art methods, achieving an average error of \n<inline-formula><tex-math>$1.60^\\circ$</tex-math></inline-formula>\n for rotation and 1.83% for translation. Additionally, we demonstrated a USV-AAV team operation with enhanced visual information achieved with the proposed method.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1601-1608"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816390","citationCount":"0","resultStr":"{\"title\":\"Directional Correspondence Based Cross-Source Point Cloud Registration for USV-AAV Cooperation in Lentic Environments\",\"authors\":\"Byoungkwon Yoon;Seokhyun Hong;Dongjun Lee\",\"doi\":\"10.1109/LRA.2024.3523232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel cross-source point cloud registration (CSPR) method for USV-AAV cooperation in lentic environments. In the wild outdoors, which is the typical working domain of the USV-AAV team, CSPR faces significant challenges due to platform-domain problems (complex unstructured surroundings and viewing angle difference) in addition to sensor-domain problems (varying density, noise pattern, and scale). These characteristics make large discrepancies in local geometry, causing existing CSPR methods that rely on point-to-point correspondence based on local geometry around key points (e.g. surface normal, shape function, angle) to struggle. To address this challenge, we propose the novel concept of a directional correspondence-based iterative cross-source point cloud registration algorithm. Instead of using point-to-point correspondence under large discrepancies in local geometry, we build correspondence about directions to enable robust registration in the wild outdoors. Also, since the proposed directional correspondence uses bearing angle and normalized coordinate, we can separate scale estimation with transformation, effectively resolving the problem of different scales between two point clouds. Our algorithm outperforms the state-of-the-art methods, achieving an average error of \\n<inline-formula><tex-math>$1.60^\\\\circ$</tex-math></inline-formula>\\n for rotation and 1.83% for translation. Additionally, we demonstrated a USV-AAV team operation with enhanced visual information achieved with the proposed method.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1601-1608\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816390\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816390/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816390/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新颖的跨源点云配准(CSPR)方法,用于虚拟环境下的USV-AAV协作。在野外,这是USV-AAV团队的典型工作领域,由于平台域问题(复杂的非结构化环境和视角差异)以及传感器域问题(不同的密度、噪声模式和规模),CSPR面临着重大挑战。这些特征使得局部几何存在很大的差异,导致现有的CSPR方法依赖于基于关键点周围局部几何(如表面法线、形状函数、角度)的点对点对应。为了解决这一挑战,我们提出了一种基于方向对应的迭代交叉源点云配准算法的新概念。而不是使用点对点对应下的大差异的局部几何,我们建立对应的方向,以实现在野外户外的鲁棒配准。此外,由于所提出的方向对应使用了方位角和归一化坐标,因此可以将尺度估计与变换分离,有效地解决了两个点云之间不同尺度的问题。我们的算法优于最先进的方法,旋转的平均误差为1.60^\circ$,平移的平均误差为1.83%。此外,我们还演示了USV-AAV团队操作,该方法增强了视觉信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directional Correspondence Based Cross-Source Point Cloud Registration for USV-AAV Cooperation in Lentic Environments
We propose a novel cross-source point cloud registration (CSPR) method for USV-AAV cooperation in lentic environments. In the wild outdoors, which is the typical working domain of the USV-AAV team, CSPR faces significant challenges due to platform-domain problems (complex unstructured surroundings and viewing angle difference) in addition to sensor-domain problems (varying density, noise pattern, and scale). These characteristics make large discrepancies in local geometry, causing existing CSPR methods that rely on point-to-point correspondence based on local geometry around key points (e.g. surface normal, shape function, angle) to struggle. To address this challenge, we propose the novel concept of a directional correspondence-based iterative cross-source point cloud registration algorithm. Instead of using point-to-point correspondence under large discrepancies in local geometry, we build correspondence about directions to enable robust registration in the wild outdoors. Also, since the proposed directional correspondence uses bearing angle and normalized coordinate, we can separate scale estimation with transformation, effectively resolving the problem of different scales between two point clouds. Our algorithm outperforms the state-of-the-art methods, achieving an average error of $1.60^\circ$ for rotation and 1.83% for translation. Additionally, we demonstrated a USV-AAV team operation with enhanced visual information achieved with the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信