{"title":"具有固有横模抑制的层状LiNbO3/ at -石英宽带器件","authors":"Peisen Liu;Boyuan Xiao;Sulei Fu;Huiping Xu;Qiufeng Xu;Xinchen Zhou;Rui Wang;Cheng Song;Fei Zeng;Weibiao Wang;Feng Pan","doi":"10.1109/LMWT.2024.3496911","DOIUrl":null,"url":null,"abstract":"This letter reports on a novel layered structure with inherent spurious transverse suppression for shear-horizontal surface acoustic wave (SH-SAW) wideband devices. The platform integrates a giant electromechanical coupling factor (\n<inline-formula> <tex-math>$k_{\\text {eff}}^{2}$ </tex-math></inline-formula>\n) lithium niobate (LN) thin film with a commercially available AT-quartz substrate characterized by strong concave shear horizontal slowness, inherently suppressing transverse modes through slowness curve manipulation. We compared the proposed LN/AT-quartz platform with prevalent LN/SiO2/Si structure through 3-D finite-element analyses and device measurements, theoretically and experimentally verifying the superior capability of AT-quartz for transverse mode suppression. Besides large \n<inline-formula> <tex-math>$k_{\\text {eff}}^{2}$ </tex-math></inline-formula>\n over 20%, maximum quality factor (\n<inline-formula> <tex-math>$Q_{\\max }$ </tex-math></inline-formula>\n) exceeding 800, and spurious-free responses up to 6 GHz achieved in fabricated LN/AT-quartz resonators, transverse modes were inherently mitigated in LN thin-film layered surface acoustic wave (SAW) devices for the first time. The fabricated synchronous gigahertz filter shows a 3-dB fractional bandwidth (FBW) of 10.5%, a minimum insertion loss (ILmin) of 0.36 dB, and flat passband with transverse modes well inherently suppressed utilizing standard interdigital transducer (IDT) layout.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 1","pages":"119-122"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered LiNbO3/AT-Quartz Wideband Devices With Inherent Transverse Mode Suppression\",\"authors\":\"Peisen Liu;Boyuan Xiao;Sulei Fu;Huiping Xu;Qiufeng Xu;Xinchen Zhou;Rui Wang;Cheng Song;Fei Zeng;Weibiao Wang;Feng Pan\",\"doi\":\"10.1109/LMWT.2024.3496911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter reports on a novel layered structure with inherent spurious transverse suppression for shear-horizontal surface acoustic wave (SH-SAW) wideband devices. The platform integrates a giant electromechanical coupling factor (\\n<inline-formula> <tex-math>$k_{\\\\text {eff}}^{2}$ </tex-math></inline-formula>\\n) lithium niobate (LN) thin film with a commercially available AT-quartz substrate characterized by strong concave shear horizontal slowness, inherently suppressing transverse modes through slowness curve manipulation. We compared the proposed LN/AT-quartz platform with prevalent LN/SiO2/Si structure through 3-D finite-element analyses and device measurements, theoretically and experimentally verifying the superior capability of AT-quartz for transverse mode suppression. Besides large \\n<inline-formula> <tex-math>$k_{\\\\text {eff}}^{2}$ </tex-math></inline-formula>\\n over 20%, maximum quality factor (\\n<inline-formula> <tex-math>$Q_{\\\\max }$ </tex-math></inline-formula>\\n) exceeding 800, and spurious-free responses up to 6 GHz achieved in fabricated LN/AT-quartz resonators, transverse modes were inherently mitigated in LN thin-film layered surface acoustic wave (SAW) devices for the first time. The fabricated synchronous gigahertz filter shows a 3-dB fractional bandwidth (FBW) of 10.5%, a minimum insertion loss (ILmin) of 0.36 dB, and flat passband with transverse modes well inherently suppressed utilizing standard interdigital transducer (IDT) layout.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 1\",\"pages\":\"119-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758807/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758807/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文报道了一种用于剪切-水平表面声波(SH-SAW)宽带器件的具有固有杂散横向抑制的新型层状结构。该平台将巨大的机电耦合系数($k_{\text {eff}}^{2}$)铌酸锂(LN)薄膜与市上可用的at -石英衬底集成在一起,其特点是具有强凹剪切水平慢度,通过慢度曲线操纵固有地抑制横向模式。通过三维有限元分析和器件测量,我们将所提出的LN/ at -石英平台与流行的LN/SiO2/Si结构进行了比较,从理论上和实验上验证了at -石英在横模抑制方面的优越性能。除了在制备的LN/ at -石英谐振器中实现了超过20%的大$k_{\text {eff}}^{2}$,最大质量因子($Q_{\max}$)超过800,以及高达6 GHz的无杂散响应外,还首次在LN薄膜层状表面声波(SAW)器件中实现了固有的横向模式减轻。该同步千兆赫滤波器的3db分数带宽(FBW)为10.5%,最小插入损耗(ILmin)为0.36 dB,并且采用标准数字间换能器(IDT)布局,具有良好的固有抑制横向模式的平坦通带。
Layered LiNbO3/AT-Quartz Wideband Devices With Inherent Transverse Mode Suppression
This letter reports on a novel layered structure with inherent spurious transverse suppression for shear-horizontal surface acoustic wave (SH-SAW) wideband devices. The platform integrates a giant electromechanical coupling factor (
$k_{\text {eff}}^{2}$
) lithium niobate (LN) thin film with a commercially available AT-quartz substrate characterized by strong concave shear horizontal slowness, inherently suppressing transverse modes through slowness curve manipulation. We compared the proposed LN/AT-quartz platform with prevalent LN/SiO2/Si structure through 3-D finite-element analyses and device measurements, theoretically and experimentally verifying the superior capability of AT-quartz for transverse mode suppression. Besides large
$k_{\text {eff}}^{2}$
over 20%, maximum quality factor (
$Q_{\max }$
) exceeding 800, and spurious-free responses up to 6 GHz achieved in fabricated LN/AT-quartz resonators, transverse modes were inherently mitigated in LN thin-film layered surface acoustic wave (SAW) devices for the first time. The fabricated synchronous gigahertz filter shows a 3-dB fractional bandwidth (FBW) of 10.5%, a minimum insertion loss (ILmin) of 0.36 dB, and flat passband with transverse modes well inherently suppressed utilizing standard interdigital transducer (IDT) layout.