Junwei Ding, Miao Du, Shiwen Wang, Linsen Zhang, Yuanzheng Yue, Morten M Smedskjaer
{"title":"具有无序异质界面的非晶材料异质结构用于先进的可充电电池","authors":"Junwei Ding, Miao Du, Shiwen Wang, Linsen Zhang, Yuanzheng Yue, Morten M Smedskjaer","doi":"10.1039/d4ee04566a","DOIUrl":null,"url":null,"abstract":"Advanced rechargeable batteries are critical for enabling effective energy storage. A promising strategy to improve the electrochemical performance involves tailoring heterostructures (HSs) with heterointerfaces (HIs) in the active battery components. The HIs between two heterogeneous materials can facilitate localized \"space charge effect\" to enhance the capacity output and accelerate mass/charge transfer kinetics. Compared to crystalline HSs and HIs, amorphous material (AM) based HSs possess disordered HIs, which exhibit unique characteristics, such as larger free volume for storing ions and more open channels for fast ion transport. These HSs allow easier release of stress and adjustment of interface band structure. In this review article, the advantages and classification of AM-based HSs with HIs as well as their synthesis and structural characterization methods are first described. Then their potential applications in different types of rechargeable batteries are elaborated. The designed HSs with HIs should supply sufficient ion storage sites, boost charge/mass transfer kinetics, and possess stable structure stability. The key challenges for developing AM-based HSs with HIs are outlined, such as their low ionic and/or electronic conductivity, poor mechanical properties, and high interface resistance. At the end, solutions are proposed for enabling large-scale implementation.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"25 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries\",\"authors\":\"Junwei Ding, Miao Du, Shiwen Wang, Linsen Zhang, Yuanzheng Yue, Morten M Smedskjaer\",\"doi\":\"10.1039/d4ee04566a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced rechargeable batteries are critical for enabling effective energy storage. A promising strategy to improve the electrochemical performance involves tailoring heterostructures (HSs) with heterointerfaces (HIs) in the active battery components. The HIs between two heterogeneous materials can facilitate localized \\\"space charge effect\\\" to enhance the capacity output and accelerate mass/charge transfer kinetics. Compared to crystalline HSs and HIs, amorphous material (AM) based HSs possess disordered HIs, which exhibit unique characteristics, such as larger free volume for storing ions and more open channels for fast ion transport. These HSs allow easier release of stress and adjustment of interface band structure. In this review article, the advantages and classification of AM-based HSs with HIs as well as their synthesis and structural characterization methods are first described. Then their potential applications in different types of rechargeable batteries are elaborated. The designed HSs with HIs should supply sufficient ion storage sites, boost charge/mass transfer kinetics, and possess stable structure stability. The key challenges for developing AM-based HSs with HIs are outlined, such as their low ionic and/or electronic conductivity, poor mechanical properties, and high interface resistance. At the end, solutions are proposed for enabling large-scale implementation.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee04566a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04566a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries
Advanced rechargeable batteries are critical for enabling effective energy storage. A promising strategy to improve the electrochemical performance involves tailoring heterostructures (HSs) with heterointerfaces (HIs) in the active battery components. The HIs between two heterogeneous materials can facilitate localized "space charge effect" to enhance the capacity output and accelerate mass/charge transfer kinetics. Compared to crystalline HSs and HIs, amorphous material (AM) based HSs possess disordered HIs, which exhibit unique characteristics, such as larger free volume for storing ions and more open channels for fast ion transport. These HSs allow easier release of stress and adjustment of interface band structure. In this review article, the advantages and classification of AM-based HSs with HIs as well as their synthesis and structural characterization methods are first described. Then their potential applications in different types of rechargeable batteries are elaborated. The designed HSs with HIs should supply sufficient ion storage sites, boost charge/mass transfer kinetics, and possess stable structure stability. The key challenges for developing AM-based HSs with HIs are outlined, such as their low ionic and/or electronic conductivity, poor mechanical properties, and high interface resistance. At the end, solutions are proposed for enabling large-scale implementation.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).