重新设计质子陶瓷电化学电池以降低工作温度

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fan Liu, David Diercks, Praveen Kumar, Arim Seong, Mohammed Hussain Abdul Jabbar, Cenk Gumeci, Yoshihisa Furuya, Nilesh Dale, Takanori Oku, Masahiro Usuda, Pejman Kazempoor, Iman Ghamarian, Lin Liu, Liyang Fang, Di Chen, Zixian Wang, Stephen Skinner, Chuancheng Duan
{"title":"重新设计质子陶瓷电化学电池以降低工作温度","authors":"Fan Liu, David Diercks, Praveen Kumar, Arim Seong, Mohammed Hussain Abdul Jabbar, Cenk Gumeci, Yoshihisa Furuya, Nilesh Dale, Takanori Oku, Masahiro Usuda, Pejman Kazempoor, Iman Ghamarian, Lin Liu, Liyang Fang, Di Chen, Zixian Wang, Stephen Skinner, Chuancheng Duan","doi":"10.1126/sciadv.adq2507","DOIUrl":null,"url":null,"abstract":"Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to &lt;450°C will enable a wider material choice and reduce system costs. We present approaches to redesigning PCECs via readily fabricated single-grain–thick, chemically homogeneous, and robust electrolytes and a nano-micro positive electrode. At 450°C, the PCECs achieve a peak power density of 1.6 watt per square centimeter on H <jats:sub>2</jats:sub> fuel, 0.5 watt per square centimeter on NH <jats:sub>3</jats:sub> fuel, and 0.3 watt per square centimeter on CH <jats:sub>4</jats:sub> fuel in fuel cell mode. In steam electrolysis mode, a current density of &gt;0.6 ampere per square centimeter with a Faradaic efficiency of &gt;90% is achievable at 1.4 volt and 400°C. In addition, exceptional durability (&gt;2000 hours) has been demonstrated, with a degradation rate of &lt;0.01 millivolt per 100 hours in fuel cell mode at 400°C.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"2 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redesigning protonic ceramic electrochemical cells to lower the operating temperature\",\"authors\":\"Fan Liu, David Diercks, Praveen Kumar, Arim Seong, Mohammed Hussain Abdul Jabbar, Cenk Gumeci, Yoshihisa Furuya, Nilesh Dale, Takanori Oku, Masahiro Usuda, Pejman Kazempoor, Iman Ghamarian, Lin Liu, Liyang Fang, Di Chen, Zixian Wang, Stephen Skinner, Chuancheng Duan\",\"doi\":\"10.1126/sciadv.adq2507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to &lt;450°C will enable a wider material choice and reduce system costs. We present approaches to redesigning PCECs via readily fabricated single-grain–thick, chemically homogeneous, and robust electrolytes and a nano-micro positive electrode. At 450°C, the PCECs achieve a peak power density of 1.6 watt per square centimeter on H <jats:sub>2</jats:sub> fuel, 0.5 watt per square centimeter on NH <jats:sub>3</jats:sub> fuel, and 0.3 watt per square centimeter on CH <jats:sub>4</jats:sub> fuel in fuel cell mode. In steam electrolysis mode, a current density of &gt;0.6 ampere per square centimeter with a Faradaic efficiency of &gt;90% is achievable at 1.4 volt and 400°C. In addition, exceptional durability (&gt;2000 hours) has been demonstrated, with a degradation rate of &lt;0.01 millivolt per 100 hours in fuel cell mode at 400°C.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adq2507\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq2507","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

质子陶瓷电化学电池(PCECs)可以在450°C至600°C的中等温度下工作,用于发电和制氢。然而,工作温度仍然太高,无法彻底改变陶瓷电化学电池技术。将工作温度降低至450°C将使材料选择范围更广,并降低系统成本。我们提出了通过易于制造的单粒厚度、化学均匀、坚固的电解质和纳米微正极来重新设计PCECs的方法。在450°C时,在燃料电池模式下,ppcc在h2燃料下的峰值功率密度为1.6瓦/平方厘米,在nh3燃料下为0.5瓦/平方厘米,在ch4燃料下为0.3瓦/平方厘米。在蒸汽电解模式下,在1.4伏和400°C下,电流密度为0.6安培/平方厘米,法拉第效率为90%。此外,优异的耐用性(2000小时)已被证明,在400°C燃料电池模式下,每100小时的降解率为0.01毫伏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redesigning protonic ceramic electrochemical cells to lower the operating temperature
Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs. We present approaches to redesigning PCECs via readily fabricated single-grain–thick, chemically homogeneous, and robust electrolytes and a nano-micro positive electrode. At 450°C, the PCECs achieve a peak power density of 1.6 watt per square centimeter on H 2 fuel, 0.5 watt per square centimeter on NH 3 fuel, and 0.3 watt per square centimeter on CH 4 fuel in fuel cell mode. In steam electrolysis mode, a current density of >0.6 ampere per square centimeter with a Faradaic efficiency of >90% is achievable at 1.4 volt and 400°C. In addition, exceptional durability (>2000 hours) has been demonstrated, with a degradation rate of <0.01 millivolt per 100 hours in fuel cell mode at 400°C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信