Xiaodong Duan, Chong Zhang, Yujie Wu, Jun Ju, Zhe Xu, Xuanyi Li, Yao Liu, Schugofa Ohdah, Oana M. Constantin, Yifan Pan, Zhonghua Lu, Cheng Wang, Xiaojing Chen, Christine E. Gee, Georg Nagel, Sheng-Tao Hou, Shiqiang Gao, Kun Song
{"title":"经颅激活K+选择性通道视紫红质抑制癫痫发作","authors":"Xiaodong Duan, Chong Zhang, Yujie Wu, Jun Ju, Zhe Xu, Xuanyi Li, Yao Liu, Schugofa Ohdah, Oana M. Constantin, Yifan Pan, Zhonghua Lu, Cheng Wang, Xiaojing Chen, Christine E. Gee, Georg Nagel, Sheng-Tao Hou, Shiqiang Gao, Kun Song","doi":"10.1038/s41467-025-55818-w","DOIUrl":null,"url":null,"abstract":"<p>Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive. There is a critical need for effective inhibitory optogenetic tools that are highly light-sensitive and capable of suppressing neuronal activity in deep brain tissue. In this study, we developed a highly sensitive moderately K<sup>+</sup>-selective channelrhodopsin (<i>Hc</i>KCR1-hs) by molecular engineering of the recently discovered <i>Hyphochytrium catenoides</i> kalium (potassium) channelrhodopsin 1. Transcranial activation of <i>Hc</i>KCR1-hs significantly prolongs the time to the first seizure, increases survival, and decreases seizure activity in several status epilepticus mouse models. Our approach for transcranial optogenetic inhibition of neural hyperactivity may be adapted for cell type-specific neuromodulation in both basic and preclinical settings.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"130 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of epileptic seizures by transcranial activation of K+-selective channelrhodopsin\",\"authors\":\"Xiaodong Duan, Chong Zhang, Yujie Wu, Jun Ju, Zhe Xu, Xuanyi Li, Yao Liu, Schugofa Ohdah, Oana M. Constantin, Yifan Pan, Zhonghua Lu, Cheng Wang, Xiaojing Chen, Christine E. Gee, Georg Nagel, Sheng-Tao Hou, Shiqiang Gao, Kun Song\",\"doi\":\"10.1038/s41467-025-55818-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive. There is a critical need for effective inhibitory optogenetic tools that are highly light-sensitive and capable of suppressing neuronal activity in deep brain tissue. In this study, we developed a highly sensitive moderately K<sup>+</sup>-selective channelrhodopsin (<i>Hc</i>KCR1-hs) by molecular engineering of the recently discovered <i>Hyphochytrium catenoides</i> kalium (potassium) channelrhodopsin 1. Transcranial activation of <i>Hc</i>KCR1-hs significantly prolongs the time to the first seizure, increases survival, and decreases seizure activity in several status epilepticus mouse models. Our approach for transcranial optogenetic inhibition of neural hyperactivity may be adapted for cell type-specific neuromodulation in both basic and preclinical settings.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-55818-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55818-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Suppression of epileptic seizures by transcranial activation of K+-selective channelrhodopsin
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive. There is a critical need for effective inhibitory optogenetic tools that are highly light-sensitive and capable of suppressing neuronal activity in deep brain tissue. In this study, we developed a highly sensitive moderately K+-selective channelrhodopsin (HcKCR1-hs) by molecular engineering of the recently discovered Hyphochytrium catenoides kalium (potassium) channelrhodopsin 1. Transcranial activation of HcKCR1-hs significantly prolongs the time to the first seizure, increases survival, and decreases seizure activity in several status epilepticus mouse models. Our approach for transcranial optogenetic inhibition of neural hyperactivity may be adapted for cell type-specific neuromodulation in both basic and preclinical settings.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.