{"title":"基于铁电场效应晶体管的低功耗边缘检测","authors":"Jiajia Chen, Jiacheng Xu, Jiani Gu, Bowen Chen, Hongrui Zhang, Haoji Qian, Huan Liu, Rongzong Shen, Gaobo Lin, Xiao Yu, Miaomiao Zhang, Yi’an Ding, Yan Liu, Jianshi Tang, Huaqiang Wu, Chengji Jin, Genquan Han","doi":"10.1038/s41467-024-55224-8","DOIUrl":null,"url":null,"abstract":"<p>Edge detection is one of the most essential research hotspots in computer vision and has a wide variety of applications, such as image segmentation, target detection, and other high-level image processing technologies. However, efficient edge detection is difficult in a resource-constrained environment, especially edge-computing hardware. Here, we report a low-power edge detection hardware system based on HfO<sub>2</sub>-based ferroelectric field-effect transistor, which is one of the most potential non-volatile memories for energy-efficient computing. Different from the conventional edge detectors requiring sophisticated hardware for the complex operation such as convolution and gradient, the proposed edge detector is analogue-to-digital converter free and loaded into a multi-bit content addressable memory, which only needs one 4 × 4 ferroelectric field-effect transistor NAND array. The experimental results show that the proposed hardware system is able to achieve efficient image edge detection at low power consumption (~10 fJ/per operation), realizing no-accuracy-loss, low-power and analogue-to-digital-converter-free hardware system, providing a feasible solution for edge computing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-power edge detection based on ferroelectric field-effect transistor\",\"authors\":\"Jiajia Chen, Jiacheng Xu, Jiani Gu, Bowen Chen, Hongrui Zhang, Haoji Qian, Huan Liu, Rongzong Shen, Gaobo Lin, Xiao Yu, Miaomiao Zhang, Yi’an Ding, Yan Liu, Jianshi Tang, Huaqiang Wu, Chengji Jin, Genquan Han\",\"doi\":\"10.1038/s41467-024-55224-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Edge detection is one of the most essential research hotspots in computer vision and has a wide variety of applications, such as image segmentation, target detection, and other high-level image processing technologies. However, efficient edge detection is difficult in a resource-constrained environment, especially edge-computing hardware. Here, we report a low-power edge detection hardware system based on HfO<sub>2</sub>-based ferroelectric field-effect transistor, which is one of the most potential non-volatile memories for energy-efficient computing. Different from the conventional edge detectors requiring sophisticated hardware for the complex operation such as convolution and gradient, the proposed edge detector is analogue-to-digital converter free and loaded into a multi-bit content addressable memory, which only needs one 4 × 4 ferroelectric field-effect transistor NAND array. The experimental results show that the proposed hardware system is able to achieve efficient image edge detection at low power consumption (~10 fJ/per operation), realizing no-accuracy-loss, low-power and analogue-to-digital-converter-free hardware system, providing a feasible solution for edge computing.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55224-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55224-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Low-power edge detection based on ferroelectric field-effect transistor
Edge detection is one of the most essential research hotspots in computer vision and has a wide variety of applications, such as image segmentation, target detection, and other high-level image processing technologies. However, efficient edge detection is difficult in a resource-constrained environment, especially edge-computing hardware. Here, we report a low-power edge detection hardware system based on HfO2-based ferroelectric field-effect transistor, which is one of the most potential non-volatile memories for energy-efficient computing. Different from the conventional edge detectors requiring sophisticated hardware for the complex operation such as convolution and gradient, the proposed edge detector is analogue-to-digital converter free and loaded into a multi-bit content addressable memory, which only needs one 4 × 4 ferroelectric field-effect transistor NAND array. The experimental results show that the proposed hardware system is able to achieve efficient image edge detection at low power consumption (~10 fJ/per operation), realizing no-accuracy-loss, low-power and analogue-to-digital-converter-free hardware system, providing a feasible solution for edge computing.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.