医疗保健中的多模式缺失数据:全面回顾和未来方向

IF 13.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lien P. Le, Thu Nguyen, Michael A. Riegler, Pål Halvorsen, Binh T. Nguyen
{"title":"医疗保健中的多模式缺失数据:全面回顾和未来方向","authors":"Lien P. Le, Thu Nguyen, Michael A. Riegler, Pål Halvorsen, Binh T. Nguyen","doi":"10.1016/j.cosrev.2024.100720","DOIUrl":null,"url":null,"abstract":"The rapid advancement in healthcare data collection technologies and the importance of using multimodal data for accurate diagnosis leads to a surge in multimodal data characterized by different types, structures, and missing values. Machine learning algorithms for predicting or analyzing usually demand the completeness of data. As a result, handling missing data has become a critical concern in the healthcare sector. This survey paper comprehensively reviews recent works on handling multimodal missing data in healthcare. We emphasize methods for synthesizing data from various modalities or multiple sources in imputing missing data, including early fusion, late fusion, and intermediate fusion methods for missing data imputation. The main objective of this study is to identify gaps in the surveyed area and list future tasks and challenges in handling multimodal missing data in healthcare. This review is valuable for researchers and practitioners in healthcare data analysis. It provides insights into using fusion methods to improve data quality and healthcare outcomes.","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"16 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal missing data in healthcare: A comprehensive review and future directions\",\"authors\":\"Lien P. Le, Thu Nguyen, Michael A. Riegler, Pål Halvorsen, Binh T. Nguyen\",\"doi\":\"10.1016/j.cosrev.2024.100720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid advancement in healthcare data collection technologies and the importance of using multimodal data for accurate diagnosis leads to a surge in multimodal data characterized by different types, structures, and missing values. Machine learning algorithms for predicting or analyzing usually demand the completeness of data. As a result, handling missing data has become a critical concern in the healthcare sector. This survey paper comprehensively reviews recent works on handling multimodal missing data in healthcare. We emphasize methods for synthesizing data from various modalities or multiple sources in imputing missing data, including early fusion, late fusion, and intermediate fusion methods for missing data imputation. The main objective of this study is to identify gaps in the surveyed area and list future tasks and challenges in handling multimodal missing data in healthcare. This review is valuable for researchers and practitioners in healthcare data analysis. It provides insights into using fusion methods to improve data quality and healthcare outcomes.\",\"PeriodicalId\":48633,\"journal\":{\"name\":\"Computer Science Review\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cosrev.2024.100720\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.cosrev.2024.100720","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

医疗保健数据收集技术的快速发展以及使用多模态数据进行准确诊断的重要性,导致以不同类型、结构和缺失值为特征的多模态数据激增。用于预测或分析的机器学习算法通常要求数据的完整性。因此,处理丢失的数据已成为医疗保健行业的一个关键问题。这篇调查论文全面回顾了最近在医疗保健中处理多模式缺失数据的工作。我们强调了从各种方式或多个来源合成数据的方法,包括缺失数据输入的早期融合、后期融合和中间融合方法。本研究的主要目的是确定调查地区的差距,并列出未来的任务和挑战,在处理医疗保健中的多模式缺失数据。这篇综述对医疗数据分析的研究人员和从业人员有价值。它提供了使用融合方法改进数据质量和医疗保健结果的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal missing data in healthcare: A comprehensive review and future directions
The rapid advancement in healthcare data collection technologies and the importance of using multimodal data for accurate diagnosis leads to a surge in multimodal data characterized by different types, structures, and missing values. Machine learning algorithms for predicting or analyzing usually demand the completeness of data. As a result, handling missing data has become a critical concern in the healthcare sector. This survey paper comprehensively reviews recent works on handling multimodal missing data in healthcare. We emphasize methods for synthesizing data from various modalities or multiple sources in imputing missing data, including early fusion, late fusion, and intermediate fusion methods for missing data imputation. The main objective of this study is to identify gaps in the surveyed area and list future tasks and challenges in handling multimodal missing data in healthcare. This review is valuable for researchers and practitioners in healthcare data analysis. It provides insights into using fusion methods to improve data quality and healthcare outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信