Mateusz Wyrzykowski, Carmelo Di Bella, Davide Sirtoli, Nikolajs Toropovs, Pietro Lura
{"title":"煅烧粘土-石灰石水泥混凝土的塑性收缩","authors":"Mateusz Wyrzykowski, Carmelo Di Bella, Davide Sirtoli, Nikolajs Toropovs, Pietro Lura","doi":"10.1016/j.cemconres.2025.107784","DOIUrl":null,"url":null,"abstract":"Concrete made with blended cements with high clinker replacement ratios may be at higher risk of plastic shrinkage cracking when experiencing high evaporation rates immediately after casting. This paper investigates the plastic shrinkage behavior of concretes made with a cement with clinker replacement by a blend of calcined clay and limestone, which was compared to a conventional Portland cement and a Portland-limestone cement. In order to assess the risk of cracking, we studied early deformations and accompanying processes in concretes exposed to fast evaporation in a wind tunnel. As could be expected from previous studies, concretes made with both blended cements experienced higher shrinkage and cracking compared to ordinary Portland cement, mainly due to their slower hydration caused by a lower clinker amount and higher dosage of superplasticizer. However, the extent of plastic shrinkage cracking was similar with calcined-clay limestone cement and Portland-limestone cement.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"82 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic shrinkage of concrete made with calcined clay-limestone cement\",\"authors\":\"Mateusz Wyrzykowski, Carmelo Di Bella, Davide Sirtoli, Nikolajs Toropovs, Pietro Lura\",\"doi\":\"10.1016/j.cemconres.2025.107784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete made with blended cements with high clinker replacement ratios may be at higher risk of plastic shrinkage cracking when experiencing high evaporation rates immediately after casting. This paper investigates the plastic shrinkage behavior of concretes made with a cement with clinker replacement by a blend of calcined clay and limestone, which was compared to a conventional Portland cement and a Portland-limestone cement. In order to assess the risk of cracking, we studied early deformations and accompanying processes in concretes exposed to fast evaporation in a wind tunnel. As could be expected from previous studies, concretes made with both blended cements experienced higher shrinkage and cracking compared to ordinary Portland cement, mainly due to their slower hydration caused by a lower clinker amount and higher dosage of superplasticizer. However, the extent of plastic shrinkage cracking was similar with calcined-clay limestone cement and Portland-limestone cement.\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cemconres.2025.107784\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2025.107784","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Plastic shrinkage of concrete made with calcined clay-limestone cement
Concrete made with blended cements with high clinker replacement ratios may be at higher risk of plastic shrinkage cracking when experiencing high evaporation rates immediately after casting. This paper investigates the plastic shrinkage behavior of concretes made with a cement with clinker replacement by a blend of calcined clay and limestone, which was compared to a conventional Portland cement and a Portland-limestone cement. In order to assess the risk of cracking, we studied early deformations and accompanying processes in concretes exposed to fast evaporation in a wind tunnel. As could be expected from previous studies, concretes made with both blended cements experienced higher shrinkage and cracking compared to ordinary Portland cement, mainly due to their slower hydration caused by a lower clinker amount and higher dosage of superplasticizer. However, the extent of plastic shrinkage cracking was similar with calcined-clay limestone cement and Portland-limestone cement.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.