Qifeng Lyu , Yalun Wang , Dongjian Chen , Shiyuan Liu , Justin Mbabazi , Pinghua Zhu , Jiquan Lu , Shaowei Wang , Fengxiang Yin
{"title":"碳黑涂层镍泡沫电极增强的3D打印多孔混凝土结构超级电容器的储能性能和机械强度","authors":"Qifeng Lyu , Yalun Wang , Dongjian Chen , Shiyuan Liu , Justin Mbabazi , Pinghua Zhu , Jiquan Lu , Shaowei Wang , Fengxiang Yin","doi":"10.1016/j.cemconcomp.2025.105926","DOIUrl":null,"url":null,"abstract":"<div><div>To increase the manufacturing efficiency of rechargeable concrete which can alleviate the problem that intermittent new energy is difficult to integrate into the power grid, a new type of concrete structural supercapacitor (CSSC) was proposed here by using mortar-extrusion 3D printing with the carbon-black-coated Ni foam being the electrodes and reinforcement. The printability, energy storage properties, mechanical strengths, and microstructures of the printed CSSC were investigated and analyzed. Results showed adding electrodes increased the buildability because the Ni foam provided more supportiveness for the mortar. However, too many electrodes, especially for thicker ones, would damage the buildability, because thicker electrodes hindered mortar extrusion. The energy storage properties, i.e., the maximum areal capacitance and ionic conductivity of the printed CSSC are 1.59 mF/cm<sup>2</sup> and 7.2 mS/cm, respectively, which can be increased by using more conductive electrolytes. Furthermore, adding carbon black to the electrodes or increasing the thickness of the electrodes enhanced the areal capacitance and ionic conductivity, because these methods increased the contact area of electrons and ions. The maximum compressive strength and flexural strength of the printed CSSC are 32.5 MPa and 12.9 MPa, respectively, which benefited from better printability and reinforcement. However, more thicker electrodes would over-reinforce the concrete. Moreover, the carbon black reduced the bonding between the printing mortar and Ni foam, resulting in decreased mechanical strength of the printed CSSC. This study provides an efficient method to manufacture the CSSC, and insights into the properties of the printed CSSC, which may facilitate future CSSC applications.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105926"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy storage properties and mechanical strengths of 3D printed porous concrete structural supercapacitors reinforced by electrodes made of carbon-black-coated Ni foam\",\"authors\":\"Qifeng Lyu , Yalun Wang , Dongjian Chen , Shiyuan Liu , Justin Mbabazi , Pinghua Zhu , Jiquan Lu , Shaowei Wang , Fengxiang Yin\",\"doi\":\"10.1016/j.cemconcomp.2025.105926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To increase the manufacturing efficiency of rechargeable concrete which can alleviate the problem that intermittent new energy is difficult to integrate into the power grid, a new type of concrete structural supercapacitor (CSSC) was proposed here by using mortar-extrusion 3D printing with the carbon-black-coated Ni foam being the electrodes and reinforcement. The printability, energy storage properties, mechanical strengths, and microstructures of the printed CSSC were investigated and analyzed. Results showed adding electrodes increased the buildability because the Ni foam provided more supportiveness for the mortar. However, too many electrodes, especially for thicker ones, would damage the buildability, because thicker electrodes hindered mortar extrusion. The energy storage properties, i.e., the maximum areal capacitance and ionic conductivity of the printed CSSC are 1.59 mF/cm<sup>2</sup> and 7.2 mS/cm, respectively, which can be increased by using more conductive electrolytes. Furthermore, adding carbon black to the electrodes or increasing the thickness of the electrodes enhanced the areal capacitance and ionic conductivity, because these methods increased the contact area of electrons and ions. The maximum compressive strength and flexural strength of the printed CSSC are 32.5 MPa and 12.9 MPa, respectively, which benefited from better printability and reinforcement. However, more thicker electrodes would over-reinforce the concrete. Moreover, the carbon black reduced the bonding between the printing mortar and Ni foam, resulting in decreased mechanical strength of the printed CSSC. This study provides an efficient method to manufacture the CSSC, and insights into the properties of the printed CSSC, which may facilitate future CSSC applications.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"157 \",\"pages\":\"Article 105926\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946525000083\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525000083","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Energy storage properties and mechanical strengths of 3D printed porous concrete structural supercapacitors reinforced by electrodes made of carbon-black-coated Ni foam
To increase the manufacturing efficiency of rechargeable concrete which can alleviate the problem that intermittent new energy is difficult to integrate into the power grid, a new type of concrete structural supercapacitor (CSSC) was proposed here by using mortar-extrusion 3D printing with the carbon-black-coated Ni foam being the electrodes and reinforcement. The printability, energy storage properties, mechanical strengths, and microstructures of the printed CSSC were investigated and analyzed. Results showed adding electrodes increased the buildability because the Ni foam provided more supportiveness for the mortar. However, too many electrodes, especially for thicker ones, would damage the buildability, because thicker electrodes hindered mortar extrusion. The energy storage properties, i.e., the maximum areal capacitance and ionic conductivity of the printed CSSC are 1.59 mF/cm2 and 7.2 mS/cm, respectively, which can be increased by using more conductive electrolytes. Furthermore, adding carbon black to the electrodes or increasing the thickness of the electrodes enhanced the areal capacitance and ionic conductivity, because these methods increased the contact area of electrons and ions. The maximum compressive strength and flexural strength of the printed CSSC are 32.5 MPa and 12.9 MPa, respectively, which benefited from better printability and reinforcement. However, more thicker electrodes would over-reinforce the concrete. Moreover, the carbon black reduced the bonding between the printing mortar and Ni foam, resulting in decreased mechanical strength of the printed CSSC. This study provides an efficient method to manufacture the CSSC, and insights into the properties of the printed CSSC, which may facilitate future CSSC applications.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.