Vladimir A. Baturin, Sergey V. Ayukov, Anna V. Oreshina, Alexey B. Gorshkov, Victor K. Gryaznov, Igor L. Iosilevskiy, Werner Däppen
{"title":"太阳内部的氢电离","authors":"Vladimir A. Baturin, Sergey V. Ayukov, Anna V. Oreshina, Alexey B. Gorshkov, Victor K. Gryaznov, Igor L. Iosilevskiy, Werner Däppen","doi":"10.1007/s11207-024-02413-9","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen is the main chemical component of the solar plasma, and H-ionization determines basic properties of the first adiabatic exponent <span>\\({\\Gamma _{1}}\\)</span>. Its ionization significantly differs from the ionization of other chemicals. Due to the large number concentration, H-ionization causes a pronounced lowering of <span>\\({\\Gamma _{1}}\\)</span>, with a strongly asymmetric and extending across almost the entire solar convective zone. The excited states in the hydrogen atom are modeled using a partition function, which accounts for the internal degrees of freedom of the composite particle. A temperature-dependent partition function with an asymptotic cut-off tail is derived from the quantum mechanical solution for the hydrogen atom in the plasma. We present numerical simulations of hydrogen ionization, calculated using two partition function models: Planck-Larkin (PL) and Starostin-Roerich (SR). In the SR model, the hydrogen ionization shifts to higher temperatures than in the PL model. Different models for excited states of the hydrogen atom may change <span>\\({\\Gamma _{1}}\\)</span> by as much as <span>\\(10^{-2}\\)</span>. The <span>\\({\\Gamma _{1}}\\)</span> profiles for pure hydrogen exhibit a “twisted rope” structure for the two models, significantly affecting the helium ionization and the position of the helium hump. This entanglement of H and He effect provides a valuable opportunity to investigate the role of excited states in the solar plasma.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Ionization Inside the Sun\",\"authors\":\"Vladimir A. Baturin, Sergey V. Ayukov, Anna V. Oreshina, Alexey B. Gorshkov, Victor K. Gryaznov, Igor L. Iosilevskiy, Werner Däppen\",\"doi\":\"10.1007/s11207-024-02413-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen is the main chemical component of the solar plasma, and H-ionization determines basic properties of the first adiabatic exponent <span>\\\\({\\\\Gamma _{1}}\\\\)</span>. Its ionization significantly differs from the ionization of other chemicals. Due to the large number concentration, H-ionization causes a pronounced lowering of <span>\\\\({\\\\Gamma _{1}}\\\\)</span>, with a strongly asymmetric and extending across almost the entire solar convective zone. The excited states in the hydrogen atom are modeled using a partition function, which accounts for the internal degrees of freedom of the composite particle. A temperature-dependent partition function with an asymptotic cut-off tail is derived from the quantum mechanical solution for the hydrogen atom in the plasma. We present numerical simulations of hydrogen ionization, calculated using two partition function models: Planck-Larkin (PL) and Starostin-Roerich (SR). In the SR model, the hydrogen ionization shifts to higher temperatures than in the PL model. Different models for excited states of the hydrogen atom may change <span>\\\\({\\\\Gamma _{1}}\\\\)</span> by as much as <span>\\\\(10^{-2}\\\\)</span>. The <span>\\\\({\\\\Gamma _{1}}\\\\)</span> profiles for pure hydrogen exhibit a “twisted rope” structure for the two models, significantly affecting the helium ionization and the position of the helium hump. This entanglement of H and He effect provides a valuable opportunity to investigate the role of excited states in the solar plasma.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02413-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02413-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Hydrogen is the main chemical component of the solar plasma, and H-ionization determines basic properties of the first adiabatic exponent \({\Gamma _{1}}\). Its ionization significantly differs from the ionization of other chemicals. Due to the large number concentration, H-ionization causes a pronounced lowering of \({\Gamma _{1}}\), with a strongly asymmetric and extending across almost the entire solar convective zone. The excited states in the hydrogen atom are modeled using a partition function, which accounts for the internal degrees of freedom of the composite particle. A temperature-dependent partition function with an asymptotic cut-off tail is derived from the quantum mechanical solution for the hydrogen atom in the plasma. We present numerical simulations of hydrogen ionization, calculated using two partition function models: Planck-Larkin (PL) and Starostin-Roerich (SR). In the SR model, the hydrogen ionization shifts to higher temperatures than in the PL model. Different models for excited states of the hydrogen atom may change \({\Gamma _{1}}\) by as much as \(10^{-2}\). The \({\Gamma _{1}}\) profiles for pure hydrogen exhibit a “twisted rope” structure for the two models, significantly affecting the helium ionization and the position of the helium hump. This entanglement of H and He effect provides a valuable opportunity to investigate the role of excited states in the solar plasma.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.