太阳内部的氢电离

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Vladimir A. Baturin, Sergey V. Ayukov, Anna V. Oreshina, Alexey B. Gorshkov, Victor K. Gryaznov, Igor L. Iosilevskiy, Werner Däppen
{"title":"太阳内部的氢电离","authors":"Vladimir A. Baturin,&nbsp;Sergey V. Ayukov,&nbsp;Anna V. Oreshina,&nbsp;Alexey B. Gorshkov,&nbsp;Victor K. Gryaznov,&nbsp;Igor L. Iosilevskiy,&nbsp;Werner Däppen","doi":"10.1007/s11207-024-02413-9","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen is the main chemical component of the solar plasma, and H-ionization determines basic properties of the first adiabatic exponent <span>\\({\\Gamma _{1}}\\)</span>. Its ionization significantly differs from the ionization of other chemicals. Due to the large number concentration, H-ionization causes a pronounced lowering of <span>\\({\\Gamma _{1}}\\)</span>, with a strongly asymmetric and extending across almost the entire solar convective zone. The excited states in the hydrogen atom are modeled using a partition function, which accounts for the internal degrees of freedom of the composite particle. A temperature-dependent partition function with an asymptotic cut-off tail is derived from the quantum mechanical solution for the hydrogen atom in the plasma. We present numerical simulations of hydrogen ionization, calculated using two partition function models: Planck-Larkin (PL) and Starostin-Roerich (SR). In the SR model, the hydrogen ionization shifts to higher temperatures than in the PL model. Different models for excited states of the hydrogen atom may change <span>\\({\\Gamma _{1}}\\)</span> by as much as <span>\\(10^{-2}\\)</span>. The <span>\\({\\Gamma _{1}}\\)</span> profiles for pure hydrogen exhibit a “twisted rope” structure for the two models, significantly affecting the helium ionization and the position of the helium hump. This entanglement of H and He effect provides a valuable opportunity to investigate the role of excited states in the solar plasma.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Ionization Inside the Sun\",\"authors\":\"Vladimir A. Baturin,&nbsp;Sergey V. Ayukov,&nbsp;Anna V. Oreshina,&nbsp;Alexey B. Gorshkov,&nbsp;Victor K. Gryaznov,&nbsp;Igor L. Iosilevskiy,&nbsp;Werner Däppen\",\"doi\":\"10.1007/s11207-024-02413-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen is the main chemical component of the solar plasma, and H-ionization determines basic properties of the first adiabatic exponent <span>\\\\({\\\\Gamma _{1}}\\\\)</span>. Its ionization significantly differs from the ionization of other chemicals. Due to the large number concentration, H-ionization causes a pronounced lowering of <span>\\\\({\\\\Gamma _{1}}\\\\)</span>, with a strongly asymmetric and extending across almost the entire solar convective zone. The excited states in the hydrogen atom are modeled using a partition function, which accounts for the internal degrees of freedom of the composite particle. A temperature-dependent partition function with an asymptotic cut-off tail is derived from the quantum mechanical solution for the hydrogen atom in the plasma. We present numerical simulations of hydrogen ionization, calculated using two partition function models: Planck-Larkin (PL) and Starostin-Roerich (SR). In the SR model, the hydrogen ionization shifts to higher temperatures than in the PL model. Different models for excited states of the hydrogen atom may change <span>\\\\({\\\\Gamma _{1}}\\\\)</span> by as much as <span>\\\\(10^{-2}\\\\)</span>. The <span>\\\\({\\\\Gamma _{1}}\\\\)</span> profiles for pure hydrogen exhibit a “twisted rope” structure for the two models, significantly affecting the helium ionization and the position of the helium hump. This entanglement of H and He effect provides a valuable opportunity to investigate the role of excited states in the solar plasma.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02413-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02413-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

氢是太阳等离子体的主要化学成分,氢电离决定了第一绝热指数\({\Gamma _{1}}\)的基本性质。它的电离作用与其他化学物质的电离作用明显不同。由于大量的离子浓度,h电离导致\({\Gamma _{1}}\)的显著降低,具有强烈的不对称性,并且几乎延伸到整个太阳对流区。用配分函数来模拟氢原子的激发态,该配分函数解释了复合粒子的内部自由度。从等离子体中氢原子的量子力学解中导出了一个具有渐近截止尾的温度相关配分函数。我们提出了氢电离的数值模拟,使用两个配分函数模型:Planck-Larkin (PL)和Starostin-Roerich (SR)计算。在SR模型中,氢电离转移到比PL模型更高的温度。不同的氢原子激发态模型可能会有\({\Gamma _{1}}\)之大的变化\(10^{-2}\)之大。纯氢的\({\Gamma _{1}}\)谱线在两种模型中表现为“扭绳”结构,显著影响氦电离和氦峰的位置。这种H和He效应的纠缠为研究太阳等离子体中激发态的作用提供了一个宝贵的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen Ionization Inside the Sun

Hydrogen is the main chemical component of the solar plasma, and H-ionization determines basic properties of the first adiabatic exponent \({\Gamma _{1}}\). Its ionization significantly differs from the ionization of other chemicals. Due to the large number concentration, H-ionization causes a pronounced lowering of \({\Gamma _{1}}\), with a strongly asymmetric and extending across almost the entire solar convective zone. The excited states in the hydrogen atom are modeled using a partition function, which accounts for the internal degrees of freedom of the composite particle. A temperature-dependent partition function with an asymptotic cut-off tail is derived from the quantum mechanical solution for the hydrogen atom in the plasma. We present numerical simulations of hydrogen ionization, calculated using two partition function models: Planck-Larkin (PL) and Starostin-Roerich (SR). In the SR model, the hydrogen ionization shifts to higher temperatures than in the PL model. Different models for excited states of the hydrogen atom may change \({\Gamma _{1}}\) by as much as \(10^{-2}\). The \({\Gamma _{1}}\) profiles for pure hydrogen exhibit a “twisted rope” structure for the two models, significantly affecting the helium ionization and the position of the helium hump. This entanglement of H and He effect provides a valuable opportunity to investigate the role of excited states in the solar plasma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信