Yuanchao Zhang, Ming Huang, Yujing Jiang, Qian Yin, Song jiang, Shengliang Ming, Jianlong Cheng
{"title":"等法向刚度条件下剪切岩桥断裂的剪切收缩机理及力学行为","authors":"Yuanchao Zhang, Ming Huang, Yujing Jiang, Qian Yin, Song jiang, Shengliang Ming, Jianlong Cheng","doi":"10.1007/s10064-024-04034-9","DOIUrl":null,"url":null,"abstract":"<div><p>Shear-induced rock bridge fractures greatly threaten the stability of rock slopes and deep rock masses, owing to their connection with pre-existing discontinuities. In this research, direct shear tests on sandstone rock bridges were performed under constant normal stiffness (CNS) conditions. The effects of rock bridge length, initial normal stress and normal stiffness on the shear behavior of rock bridges were carefully investigated, encompassing both the pre-failure (cracking phase) and post-failure (sliding phase) stages. Test results revealed that these three factors variably impact the shear strength, dilation characteristics, failure pattern and acoustic emission response of the rock bridges. In particular, normal stiffness was found to greatly affect the post-peak slip behavior. It was observed that shear-induced rock bridge fractures exhibit distinctive shear contraction characteristics, which contrast with tension-induced splitting fractures that are typically marked by shear dilation. The shear contraction mechanism of rock bridge fractures was elucidated using a conceptual cracking model, termed the TST model. This research contributes fresh insights to the comprehension of dynamic slip hazards prompted by the rupture of rock bridges in deep rock engineering.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear contraction mechanism and mechanical behavior of shear-induced rock bridge fractures under constant normal stiffness conditions\",\"authors\":\"Yuanchao Zhang, Ming Huang, Yujing Jiang, Qian Yin, Song jiang, Shengliang Ming, Jianlong Cheng\",\"doi\":\"10.1007/s10064-024-04034-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shear-induced rock bridge fractures greatly threaten the stability of rock slopes and deep rock masses, owing to their connection with pre-existing discontinuities. In this research, direct shear tests on sandstone rock bridges were performed under constant normal stiffness (CNS) conditions. The effects of rock bridge length, initial normal stress and normal stiffness on the shear behavior of rock bridges were carefully investigated, encompassing both the pre-failure (cracking phase) and post-failure (sliding phase) stages. Test results revealed that these three factors variably impact the shear strength, dilation characteristics, failure pattern and acoustic emission response of the rock bridges. In particular, normal stiffness was found to greatly affect the post-peak slip behavior. It was observed that shear-induced rock bridge fractures exhibit distinctive shear contraction characteristics, which contrast with tension-induced splitting fractures that are typically marked by shear dilation. The shear contraction mechanism of rock bridge fractures was elucidated using a conceptual cracking model, termed the TST model. This research contributes fresh insights to the comprehension of dynamic slip hazards prompted by the rupture of rock bridges in deep rock engineering.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-04034-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04034-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Shear contraction mechanism and mechanical behavior of shear-induced rock bridge fractures under constant normal stiffness conditions
Shear-induced rock bridge fractures greatly threaten the stability of rock slopes and deep rock masses, owing to their connection with pre-existing discontinuities. In this research, direct shear tests on sandstone rock bridges were performed under constant normal stiffness (CNS) conditions. The effects of rock bridge length, initial normal stress and normal stiffness on the shear behavior of rock bridges were carefully investigated, encompassing both the pre-failure (cracking phase) and post-failure (sliding phase) stages. Test results revealed that these three factors variably impact the shear strength, dilation characteristics, failure pattern and acoustic emission response of the rock bridges. In particular, normal stiffness was found to greatly affect the post-peak slip behavior. It was observed that shear-induced rock bridge fractures exhibit distinctive shear contraction characteristics, which contrast with tension-induced splitting fractures that are typically marked by shear dilation. The shear contraction mechanism of rock bridge fractures was elucidated using a conceptual cracking model, termed the TST model. This research contributes fresh insights to the comprehension of dynamic slip hazards prompted by the rupture of rock bridges in deep rock engineering.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.